Exposing PseudoAstronomy

June 12, 2015

Are We on the Verge of Discovering an Earth-Like Exoplanet?


I announced awhile ago that I was on episode 347 of the Canadian, “The Reality Check” poscast where I talked about exoplanets and some hype — deserved or otherwise — about almost but never quite yet discovering Earth-sized exoplanets.

While they post a lot of links and other things on their website, they don’t post transcripts of what we actually talk about. Since I spent a solid many minutes writing and editing my segment’s text, I thought I’d post it here:

There’s lots of ways to talk about exoplanets, but I’m going to take the traditional approach and start with a very broad but brief overview of how we have found the few-thousand known extra-solar planets, or “exoplanets” for short. There are five main ways.

The most obvious is the most difficult: Direct Imaging. This is where you take your telescope and would look at a star and see the planet around it. This is almost impossible with current technology, and we have less than 20 exoplanets found this way. It’s so hard because the star is so bright relative to the planet and because most star systems are so far away. And obviously, if the planet is larger and farther away from the star, it’ll be easier to see.

The second main method has also only produced about 20 planets so far: Gravitational Microlensing. Einstein showed that large masses bend light, and we can see this in space when an object that’s far away passes behind a massive object that’s a lot closer. The light from the background object gets distorted and magnified, much like a lens … a lens caused by gravity. If the foreground object happens to be a star, and that star has a planet, then that planet can make a detectable contribution to the lensing, not only in amount, but in the exact shape of the lensing effect.

The earliest actual successful method was a special form of what’s called the Timing Method, specifically in this case, pulsar timing. Pulsars are incredibly dense stars called neutron stars, and we get a blast of radio waves every time one of its poles sweeps in the direction of Earth. These are so regular that any tiny perturbation can be detected and attributed to something weird, like a tiny planet tugging on it and so changing that regular spinning signal.

This is the same concept as the highly successful method that found the most exoplanets until a few years ago: Radial Velocity. The idea is that we normally think of a planet, like Earth, orbiting the sun. But it doesn’t really. It *and* the sun orbit a mutual gravitational point called the “barycenter” that is between the two. For Earth and the sun, that point is VERY close to the sun’s center, but it’s not quite in the center. That means that over the course of a year, as Earth goes around that point, the sun will, too (on the opposite side of that point). So, it will wobble very very slightly as it orbits the barycenter.

We can’t possibly observe this tiny tiny motion of other stars. BUT, we can use the light that star emits to do it by using the Doppler shift. That’s the phenomenon where if something is moving towards you, the waves it emits become compressed, and if it’s moving away from you, the waves get stretched out. The common example is a train whistle going from high to low pitch, but in astronomy, this is where the light is shifted to blue and then to red.

So, if the planet around another star is at its closest point to us, the star emits light and we see it all normal. As the planet starts to move away from us, the star starts to move very slightly toward Earth, and so its light will be very slightly blue-shifted. Then, the planet gets to its farthest point, and starts to move towards Earth, which means the star starts to move away, and we see its light red-shifted. This is an incredibly tiny effect, and the smaller the planet, the smaller the shift in the light. Or the pulsar timing change.

There was a lot of progress throughout the late 1990s and early 2000s in very high-resolution spectroscopy in order to get better and better at observing smaller and smaller planets. The easiest ones to observe are the largest because they make the biggest shift in the star’s light, and ones that are closest to their star are easier because you don’t have to observe as long. To observe a planet that has a 10-day orbit, you just have to observe that star for about a month from Earth to get decent statistics.

That’s why all the exoplanets discovered early on were what are called “Hot Jupiters,” since they were very large and very close to their stars.

The final method is the Transit Method. If a fly passes in front of a bright light, you can see a slight decrease in the light. If a bird passes in front of a light, you’ll see a larger decrease in the light. Same thing here: A planet passes in front of the star and temporarily blocks part of the light from the star that we would see at Earth. The big issue with this method is that you have to have the fortuitous geometry alignment where the planet’s orbit is just right so that it passes in front of its star as seen from Earth. The first one wasn’t detected until 1999, but a decade later, the dedicated spacecraft COROT and then Kepler were launched to look for these, monitoring the same fields of the sky, tens of thousands of stars, moment after moment, looking for those brief transits. In 2014, Kepler released over 800 planets discovered with this method, more than doubling the total number known, and that was on top of its other releases and, to-date, it’s found over 1000.

The transit method, despite the issue of geometry, is probably the best initial method. If you have the planet going in front of its star, then you know its alignment and you can follow-up with the radial velocity method and get the mass. Otherwise, the radial velocity method can only give you a minimum mass because you don’t know how the system is oriented, you only know that radial component of velocity, hence its name.

With the transit method, you can see how much light is blocked by the planet. Knowing the star’s type, you can get a pretty good estimate for the star’s size, and knowing how much light is blocked means you can get the cross-sectional area of the planet and hence its diameter. For example, Jupiter would block 1% of the sun’s light, and since area is the square of length, that means Jupiter is about 10% the sun’s diameter. Since the sun is a type G V star, we have a good model for its radius, though of course we know its radius very well because we’re in orbit of it. But that means not only can we get mass, but we can get size and density.

The transit method also lets us see if there’s a large atmosphere. If the light from the star instantly blinks down to the level when the planet passes in front of it, then any atmosphere really thin or nonexistent. If there’s a gradual decrease, then it’s extended. If its extended, we can follow-up with something like the Hubble Space Telescope and actually figure out what that atmosphere is made of by looking at what colors of light from the star are absorbed as it passes through the planet’s atmosphere.

And as with the radial velocity and timing methods, we know how long it takes to go around its parent star, and along with the star’s mass from what kind of star it is, we can get the distance of the planet from the star.

Okay, so much for a brief overview. But for me, I’ve left out a lot.

Moving on, it should be somewhat apparent that the bigger the planet, and the closer to its star, the easier it is to observe with pretty much ANY of these techniques, except direct imaging or microlensing where you want a big planet that’s far from its star. Big means big effect. Fast orbit means you don’t have to observe it for very long to show that it’s a regular, repeating signal best explained by a planet.

So, the question is then, can we detect an Earth-sized planet, and can we detect an Earth-like orbit? These are really two different questions and they depend on the technique you’re using. If we want to focus on a the two main methods – radial velocity and transit – then the unsatisfying answer to the second is that we do finally have good enough technology, it is just a matter of finding it. With the 2014 Kepler data release, there were over 100 exoplanets that are less than 1.25 Earth’s size. With the 2015 release, there are a total of 5 planets smaller than Earth or Venus, but they orbit their 11.2-billion-year-old star in just 3.6 to 9.7 days.

Even if we have observations for more than a year or two, for something as small as Earth, the level of signal relative to noise in the experiment is still pretty small, and you want a big signal relative to the noise. It’s best to build up multiple years’ worth of data to average out the noise to be able to really say that we have an Earth-like planet. For something like Jupiter, which orbits our sun in about 12 years, we’d need to observe at least two transits, meaning we’re just now approaching the time when we would have a long enough baseline of data with some ground-based surveys, but that’s also assuming we catch that planet for the few hours or days when it goes in front of its star versus the years and years that it doesn’t, and that we do this repeatedly and don’t chalk it up to sunspots.

This is why we really need long-term, dedicated surveys to just stare at the same place in space, constantly, measuring the light output of these stars to see if we can detect any sort of dimming, that’s repeated, from a likely planet.

But, even if we find an Earth-like planet in terms of mass and diameter and location in its solar system, that’s not enough to say it’s Earth-like in terms of atmosphere and surface gravity and overall long-term habitability. It’s just a first step. A first step we have yet to truly reach, but one that is reasonably within our grasp at this point.

But it’s from the existing planets we know of that we get some of the hype that hits the headlines every few months, like “astronomers estimate billions of Earth-like planets exist in our galaxy alone.” I’m not going to say that’s fantasy, but it’s loosely informed speculation based on extrapolating from a few thousand examples we now have from a very, VERY young field of astronomy.

Or, we’ll get articles where the first sentence says, “Astronomers have discovered two new alien worlds a bit larger than Earth circling a nearby star.” It’s in the next paragraph that we learn that “a bit larger than Earth” means 6.4 and 7.9 times our mass, and they orbit their star in just a few days.

So as always, this is a case where, when we see headlines, we need to be skeptical, NOT susceptible to the hype, and read deeper. But that said, it is entirely possible that any day now we will find an exoplanet that is at least like Earth in mass, size, and distance from its host star.

Advertisement

April 24, 2013

Podcast #72: Solar System Mysteries “Solved” by PseudoScience, Part 1 – Iapetus


Exploding planets,
Alien spaceships … Why is
Iapetus weird?

The subject of this episode is Saturn’s moon, Iapetus, and two mysteries about it that various branches of pseudoscience have claimed to solve: the brightness dichotomy via an exploded planet, and the equatorial ridge via a spaceship.

This is the first of what I plan to be a series much like “The Fake Story of Planet X” series — different mysteries of the solar system that have a pseudoscientific explanation and may or may not have a real science (agreed upon) explanation. Let me know what you think of the concept. Future ideas for shows are the Pioneer Anomaly and Mars’ crustal dichotomy.

Otherwise, there’s a bit of feedback and then I get into the puzzler from last time and one announcement.

Well, I sorta snuck in a second announcement — I’m headed to Australia, December 18 – January 20. I’ll be centered in Melbourne (which I enjoy pronouncing as “Mel-born-EE”) for most of the trip though should make it up to Sydney (I wanna see the Great Barrier Reef!). So, dinner in each city if I can round up enough interest. I’m slowly learning that Australia is not just a 5-hr drive across, so I’m less likely to make it to the eastern half. We’ll see if I can increase my Australian listenership in the meantime to make a dinner here or there worth organizing.

January 16, 2013

Podcast Episode 61: Special Pleading with Large Impacts


A complaint I’ve heard is that the invoking of giant asteroid impacts to explain some odd solar system features (Venus upside-down, Uranus on its side, etc.) is just special pleading and as crazy if not more so than the pseudoscience ideas, like Velikovsky. While I obviously have my own opinion about Velikovsky in particular, I wanted to take an episode to talk about why giant impacts are used to explain some things, and whether we have a real reason to do so or if it’s just our own way of making stuff up.

There isn’t a new puzzler, though the one from last episode – send in your favorite planetary pareidolia – is still going on.

July 1, 2012

Podcast Episode 42: Who’s Yo Mamma?! (Milky Way or Sagittarius Dwarf?)


Episode 42 has been posted — on time, I might add. We’re back to the 30-minute episode length and get back to some good ol’ Coast to Coast AM clips.

I take you on a whirlwind custody case that’s 10 years (or 5 billion years?) in the making, trying to figure out if our solar system is really a member of the Milky Way galaxy, or is it a member of the Sagittarius Dwarf galaxy, a galaxy that was only discovered in 1994 and is currently being eaten alive by the Milky Way.

I also have another crater-based Q&A, discuss the solution to episode 40’s puzzler including the feedback that everyone sent in on what the fate of the puzzler should be, and then a few quick announcements.

May 12, 2012

Some Boring New Results Show We’re Still Not Going to Cross the Galaxy In December 2012


Introduction

Many œons ago, I wrote about how we’re not going to cross the galaxy’s equator in 2012. It’s one of those ideas about a physical galactic alignment that some people believe – we’re really actually physically going to cross the equator/plane of the galaxy in December 2012 (or a window around that date) and bad stuff is going to happen as a result.

I explained in that post that, no, we’re not. The latest data I had on-hand is:

[The sun] is about 35-70 light-years “above” it (since there’s no “up” in space, you could also say it lies below it). It is also currently still traveling “upwards” in the direction of the North Galactic Pole at a rate of 7-8 km/sec.

It is also not on a perfectly circular orbit relative to the plane of the galaxy, moving presently inward at a rate of 10-11 km/sec. Its rotational velocity around the center of the galaxy is about 200 km/sec.

New research announced this past week changes that.

We’re Still Okay

The new research comes from a Science paper by McComas et al. entitled, “The Heliosphere’s Interstellar Interaction: No Bow Shock.”

Without getting too much into the nitty-gritty details, the article talks about new observations by the Interstellar Boundary Explorer spacecraft, also known as IBEX. The craft has been observing neutral atoms – meaning that they have no net electric charge – to understand the environment of the galaxy that the solar system is moving through.

The new result from this article that’s relevant to 2012 doomsday stuff is that the latest results from IBEX have revised the speed with which we thought the solar system was moving through the galaxy. We thought the sun was moving through the interstellar neighborhood at around 26 km/sec, but that value has now been revised downward to about 23 km/sec, or by around 11%.

NEW NASA DATA FROM NASA SCIENTISTS SEZ WE’RE ALL GONNA DIE!!!!!

Okay, but seriously folks, this is not a huge huge deal in terms of this upsets everything we thought we knew about the universe. This is how science works. New data comes in that has incrementally increased our understanding of something. We’re still far from the plane of the galaxy, we’re still moving away from the plane of the galaxy, just we’re moving a little more slowly.

As in, we’re not moving more quickly in the other direction towards the galactic plane so that we pass through it in seven months.

Final Thoughts

That’s about all I have to say on this one. I found the paper a bit interesting and since it remotely applied to something that I’d discussed before, thought I’d share.

And it lets me muse about how people will use old data to support their pseudoscientific ideas and NOT revise them when new data comes out that differs (remember how 2012, back in 2004, was supposed to be a huge, ginormous, deadly solar max — something that’s still repeated often?).

Which incidentally leads me to mention that I’m going to start a new segment with the next episode of my podcast, a “new news relevant to previous episodes.” This’ll be one of those news items on the May 16th episode.

Create a free website or blog at WordPress.com.