Exposing PseudoAstronomy

April 25, 2012

Argument from Authority Strikes Again at Creation Ministries International


Just a short post here – it always amazes me when people use such an obvious argument from authority to try to bolster their position. I mean, it’s not as if we don’t do it, either, or people don’t do it every day. Any time the local news brings on their talking-head expert to talk about something, that’s an argument from authority. If that expert is effectively reciting the consensus, then it’s not an argument from authority as much, that talking head was just a mouthpiece for the consensus (see my post on argument from authority vs. the scientific consensus).

But then we get into stuff that’s a controversy – either real or manufactured. Young-Earth creationism is definitely a controversy versus the scientific establishment, though I would consider it in the realm of the “manufactured” type because almost none who objectively examine observable evidence will come to the YEC side — by its nature, as I’ve pointed out many times on this blog before, YEC relies on ignoring evidence to make its case.

Anyway, in my nightly perusal of creationist websites, I came across the latest posting Creation Ministries International (CMI): “Archaeologist confirms creation and the Bible.”

I’m not really sure how you could get around the idea that the title of the article (and its content if you bother to read it) is 100% an argument from authority. It’s literally a, “Look, we have this archaeologist we can trot forward (or actually not anymore ’cause he died on April 4), and our expert who’s in this real science field says young-Earth creationism is real!”

Okay, I’m a Ph.D. astronomer, I say young-Earth creationism is fake, and the universe is 13.7 billion years old. Unfortunately, if he and I were to both testify in front of Congress, I have a feeling that Congress would conclude that the Universe is 6.850003 billion years old (the average of the two).

This post was brought to you by the logical fallacies Argument from Authority, False Balance, and Middle Ground.

Advertisements

September 1, 2011

Logical Fallacies: Argument from Authority versus the Scientific Consensus


Introduction

I haven’t done a post in almost two years to add to my very incomplete series on logical fallacies and fallacious argument techniques. However, due to recent posts – especially in the comments section – on my blog, I thought this would be a good time to re-visit the specific and very common logical fallacy of the “argument from authority,” and I want to then contrast that against the “scientific consensus.” They are not the same thing.

In actuality, I have addressed this difference before, albeit it was in the very early days of my blog and I want to pull out more specific examples and be more explicit this time.

The Argument from Authority

The argument from authority is really a very simple logical fallacy to spot: Person A has seeming authority in some subject, therefore Person B needs to believe what they say.

An example from the Apollo Moon Hoax lexicon is that David Groves, Ph.D. (the authority) showed in a study that the radiation experienced by astronauts would have rendered their photographic film damaged beyond repair (exposed) so they could not have possibly taken the pictures that NASA claims. He has a Ph.D., therefore he’s right. Except, not. His study did not use the same camera, film, nor shielding that NASA did. He exposed the film to 1000 times the strength of radiation for 100x as long (effectively). Not exactly a valid experiment to demonstrate what is claimed.

Another example, courtesy of Answers in Genesis, is that they have a Ph.D. astrophysicist on staff, “Dr. Jason Lisle, Ph.D.” Yes, his Ph.D. is valid, was in the actual science field, and he graduated a year before I entered grad school from the same department I got my degree in. Does that make his creationist writings any more valid than a guy ranting on the street? No. Does that make his claims that the fact we can argue with logic means the Bible is true (yes, he does claim that)? No.

Or, to use a contrived example from my first post on this subject, I could make the claim that Dr. Crusher is an expert on human anatomy. The fallacy then goes that if I were to say to my friends that Dr. Crusher says the neck bone is connected to the foot bone, then it must be true because she’s an expert in that field. But, obviously this is not true. In other words, the validity of the claim does not follow from the credibility of the source.

Other Examples of Argument from Authority

Isaac Newton: One of my favorite examples of the argument from authority is that of Isaac Newton. By pretty much any account and all measures, Newton was the founder of modern physics and mathematics. He didn’t just codify calculus, gravity, and motion, but also optics. He truly is one of the most important people and most authoritative people in modern science. If anyone is an authority, he is.

But then, Newton was a fervent believer in alchemy. He thought that you could turn ordinary, cheap metals (for example) into more valuable ones like gold if you combined them with the right chemicals. He pursued this as much as he pursued figuring out why we have tides.

If Newton were alive today, I would likely believe anything he said about physics (at least classical physics). But alchemy? No. I’d call him out on that pseudoscience just as much as I call out Terry Nazon on her made-up astrology. It doesn’t matter if he is revered and respected — individual arguments from authority are a logical fallacy for a reason, and citing an individual who claims one thing that does not make sense given what we know about the universe is as bad an argument as “’cause I said so, that’s why!”

Dr. Richard B. Hoover, Ph.D. from NASA: First reported widely on FOX news in early March, 2011, Dr. Richard B. Hoover, “an astrobiologist with NASA’s Marshall Space Flight Center,” found life on a meteorite. He published his findings in the “peer-reviewed” Journal of Cosmology. This was very quickly torn apart by most scientists in the field and in related fields where we (yes, I participated) pointed out that he was seeing pareidolia shapes in rocks, his findings were not verified nor replicable by his peers in the field, and that the Journal of Cosmology is one of the crackpot “journals” in astronomy.

JoC is a fringe journal at best. To quote PZ Myers, “it isn’t a real science journal at all, but is the ginned-up website of a small group of crank academics obsessed with the idea of Hoyle and Wickramasinghe that life originated in outer space and simply rained down on Earth.” In response to Hoover’s paper, it contacted the editors of Science and Nature to put together a panel of experts to evaluate the claims. Then it stated, “any refusal to cooperate, no matter what the excuse [will be] vindication for the Journal of Cosmology and the Hoover paper, and an acknowledgment that the editorial policies of the Journal of Cosmology are beyond reproach.” With that, they clearly cross into the tactics used by many pseudoscientists whereby either (a) they wear out the critics to the point the critics just don’t care anymore, or (b) the critics never cared enough in the first place to dignify the original challenge because it was so fringe to begin with.

With that said, the JoC’s editorial board is made of seven Ph.D.s, one who is the director of the center for astrobiology at Cardiff, one from NASA JPL, one who is the senior research scientist in the science directorate at NASA Langley, and another who is the head of the department of computer science at Oklahoma State University. Seems “highly qualified.” But, this is another example of a few who put together a journal being an argument from authority. I actually looked up one of the Ph.D.s because he is in my former department here at CU-Boulder. Looking further into him, there’s really nothing to find other than he’s emeritus faculty — basically retired but still hangs around. His personal website was last updated in 2001.

So we have another case where all because someone is a NASA scientist, all because someone is a department chair, all because someone is a center director, it does not mean that all of their claims can be taken as true.

Similarly, if you can convince a NASA scientist, an imaging professional, someone at the CDC, someone who runs the computers for a major NASA mission, or someone who builds spacecraft that your particular claim is true, that does not mean that everyone else needs to believe it.

My 8th Grade Science Teacher: We started out 8th grade science with going around the room and saying what our parents did for a living. The teacher then told us that he used to work in the local hospital. For some reason, that seemed to convey some authority at the time. In hindsight, I think he was trying to make himself feel good.

That authority quickly vanished during our astronomy unit when he explained to us that the moon was three times farther away from Earth than the sun, a kilometer is longer than a mile, and that to stop a space ship in space you shut off the engines and wait for it to wander near a planet and have the planet’s gravity slow you down. After some checking, his job at the local hospital turned out to be in security. Obviously, this was a case where a stated authority (working at a hospital) and a presumed authority (being the teacher) could not mask gross incompetence.

Scientific Consensus: NOT An Argument from Authority

In contrast, the scientific consensus is not an argument from authority. There are a couple of ways to think about this. The most basic and concise is that the scientific consensus is not based on an individual’s or small group’s credibility.

A more lengthy way to think about this is that the scientific community is convinced by evidence, not by individual charisma nor authority. I’ve said it many, many times before in this blog, and I’ve written at least a whole post on it, that contrary to seemingly popular opinion, scientists want to create new paradigms. They want to be able to convince their colleagues and detractors that they are correct. Upholding the status quo means you are guaranteed to be forgotten. And, the only way you are going to convince everyone that you are correct is to provide them with overwhelmingly convincing evidence and to show that your new model/idea explains all of the evidence that the previous one did at least as well, if not better.

Once this is done, the people who are experts in the field will be convinced. They can then go out and convince others in related fields that this is the actual way things work. Again — it’s not an authority, they are convincing people by the evidence. This process continues to trickle throughout the scientific community until there is a broad consensus on that issue.

By that point, what is a lay person to do? Should they trust Dr. Linus Pauling, a twice Nobel Laureate who claimed that high doses of Vitamin C basically prevented almost all illnesses and cured many diseases, including cancer? Or should they trust the scientific consensus – a group of tens of thousands of medical professionals who have read and been convinced by the research – that Pauling was deluded?

I’m not saying that you should trust the consensus view blindly. Try to understand it. Understand why the consensus is what it is. What is the evidence that has convinced everyone? At that point, if you still think they may be wrong, then figure out why the consensus view is not convinced by the evidence that you are. It is highly likely that you are misunderstanding something, not thousands of people who have spent their lives studying the issue.

The Scientific Consensus is Not Infallible

That all being said, scientists will usually be the first (as in, not the last) to admit that the consensus is fallible and that their views can be changed by the evidence. That is how new paradigms happen. Plate tectonic theory was laughed at for about two decades before overwhelming evidence for it was presented that changed the entire consensus opinion within just a few years. The same was true with the death of the dinosaurs — there were many different hypotheses out there but when the iridium layer was found at the K/T boundary and the crater was finally discovered off the Yucatan peninsula, the scientific consensus changed very rapidly in light of the evidence.

Certain scientific paradigms/consensuses (according to spell-check, that is the plural of “consensus” even though it sounds wrong, but who am I to argue with spell-check?) that we hold now could very likely change in the future. What is unlikely, though, is for them to change to something for which there is currently very convincing evidence that it is not the case. An example of this would be astrology – there is absolutely no mechanism for it to work, and all statistically robust studies show that it fails to produce results better than chance.

Final Thoughts

In the end, the argument from authority is quite an easy logical fallacy to spot. Differentiating it from the scientific consensus is not as easy, and understanding the difference between the fallacious argument from authority and the non-fallacious scientific consensus is even harder. Steve Novella has a post on this topic from about a year ago, and I recommend reading it if you’re still a bit confused about the difference.

What should also be re-emphasized is that you should never take anything on blind faith/authority. If you hear an argument from authority, investigate the claim. If you hear a scientific consensus that you disagree with, first understand the evidence that convinced the scientists, and then figure out why you disagree. If you think you have solid evidence to the contrary, it has not been shown to be wrong, and your model can explain all of the data that the currently accepted model does at least as well, then present it and try to convince them. But also be humble enough to realize that the evidence that convinces you, when it may be pointed out by people within that scientific community that it’s wrong, actually is probably wrong. At the very least, you should admit that people disagree with you and find faults because of [insert reason].

That’s what scientists do, too.

May 29, 2010

Skeptiko Host Alex Tsakiris: On the Non-Scientifically Trained Trying to Do/Understand Science


Preamble

First, let me give one announcement for folks who may read this blog regularly (hi Karl!). This may be my last post for about a month or so. As you may remember from my last post, I will be teaching all next month, June 1 through July 2, and the class is every day for 95 minutes. I have no idea how much free time I may have to do a blog post, and I have some other projects I need to finish up before the end of the month (I’m also a photographer and I had a bride finally get back to me about photos she wants finished).

Introduction

I have posted once before about Skeptiko podcast host Alex Tsakiris in my post about The Importance of Peer-Review in Science. The purpose of that post was to primarily show that peer review is an important part of the scientific process, a claim contrary to what the host of said podcast had claimed.

Now for the official disclaimer on this post: I do not know if Alex is a trained scientist. Based on what he has stated on his podcast, my conclusion is that he is not. What I have read of his background (something like “successful software entrepreneur” or around those lines) supports that conclusion. However, I don’t want to be called out for libel just in case and so that is my disclaimer.

Also, I am not using this post to say whether I think near-death experiences are a materialistic phenomenon or point to a mind-brain duality (mind/consciousness can exist separately from brain). That is NOT the point of this post and I am unqualified to speak with any authority on the subject (something I think Alex needs to admit more often).

Anyway, I just completed listening to the rather long Skeptiko episode #105 on near-death experiences with Skeptics’ Guide to the Universe host Steven Novella Dr. Steven Novella (see Points 2 and 3 below for that “Dr.” point). I want to use that episode to make a few points about how science is done that an (apparently) non-scientifically-trained person will miss. This post is not meant to be a dig/diss against so-called “citizen science,” rather the pitfalls of which non-scientists should be aware when trying to investigate pretty much ANY kind of science.

Point 1: Conclusions Are Not Data

Many times during the episode’s main interview and after the interview in the “follow-up,” Alex would talk about a paper’s conclusions. “The researchers said …” was a frequent refrain, or “In the paper’s conclusions …” or even “The conclusions in the Abstract …” I may be remembering incorrectly, perhaps someone may point that out, but I do not recall any case where Alex instead stated, “The data in this paper objectively show [this], therefore we can conclude [that].”

This is a subtle difference. Those of you who may not be scientifically trained (or listened to Steve’s interview on the episode) may not notice that there is an important (though subtle) difference there. The difference is that the data are what scientists use to make their conclusion. A conclusion may be wrong. It may be right. It may be partially wrong and partially right (as shown later on with more studies … more data). Hopefully, if there was not academic fraud, intellectual dishonesty, nor faulty workmanship (data gathering methods), the actual data itself will NEVER be wrong, just the conclusions from it. In almost any paper — at least in the fields with which I am familiar — the quick one-line conclusions may be what people take away and remember, but it’s the actual data that will outlive that paper and that other researchers will look at when trying to replicate, use in a graduate classroom, or argue against.

I will provide two examples here, both from my own research. The first is from a paper that I just submitted on using small, 10s to 100s meter-sized craters on Mars to determine the chronology of the last episodes of volcanism on the planet. In doing the work, there were only one or two people who had studied it previously, and so they were obviously talked about in my own paper. Many times I reached the same conclusion as they in terms of ages of some of the volcanos, but several times I did not. In those cases, I went back to their data to try to figure out where/why we disagreed. It wasn’t enough just to say, “I got an age of x, she got an age of y, we disagree.” I had to look through and figure out why, and whether we had the same data results and if so why our interpretations differed, or if our actual data differed.

The second example that’s a little better than the first is with a paper I wrote back in 2008 and was finally published in a special edition of the journal Icarus in April 2010 (one of the two main planetary science journals). The paper was on simulations I did of Saturn’s rings in an attempt to determine the minimum mass of the rings (which is not known). My conclusion is that the minimum mass is about 2x the mass inferred from the old Voyager data. That conclusion is what will be used in classrooms, I have already seen used in other peoples’ presentations, and what I say at conferences. However, people who do research on the rings have my paper open to the data sections, and I emphasize the “s” because in the paper, the data sections (plural) span about 1/2 the paper, the methods section spans about 1/3, and the conclusions are closer to 1/6. When I was doing the simulations, I worked from the data sections of previous papers. It’s the data that matters when looking at these things, NOT an individual (set of) author(s).

Finally for this point, I will acknowledge that Alex often repeats something along the lines of, “I just want to go where the data takes us.” However, saying that and then reading a paper’s conclusions are not mutually compatible. Steve pointed that out at least twice during the interview. At one point in the middle, he exclaimed (paraphrasing), “Alex, I don’t care what the authors conclude in that study! I’m looking at their data and I don’t think the data supports their conclusions.”

Point 2: Argument from Authority Is Not Scientific Consensus

In my series that I got about half-way through at the end of last year on logical fallacies, I specifically avoided doing Argument from Authority because I needed to spend more time on it versus the Scientific Consensus. I still intend to do a post on that, but until then, this is the basic run-down: Argument from Authority is the logical fallacy whereby someone effectively states, “Dr. [so-and-so], who has a Ph.D. in this and is well-credentialed and knows what they’re doing, says [this], therefore it’s true/real.”

If any of my readers have listened to Skeptiko, you are very likely familiar with this argument … Alex uses it in practically EVERY episode MULTIPLE times. He will often present someone’s argument as being from a “well-credentialed scientist” or from someone who “knows what they’re doing.” This bugs the — well, this is a PG blog so I’ll just say it bugs me to no end. ALL BECAUSE SOMEONE HAS A PH.D. DOES NOT MEAN THEY KNOW WHAT THEY’RE DOING. ALL BECAUSE SOMEONE HAS DONE RESEARCH AND/OR PUBLISHED DATA DOES NOT MEAN THEIR CONCLUSIONS ARE CORRECT OR THAT THEY GATHERED THEIR DATA CORRECTLY.

Okay, sorry for going all CAPS on you, but that really cannot be said enough. And Alex seems to simply, plainly, and obviously not understand that. It is clear if you listen to practically any episode of his podcast, especially during any of the “psychic dogs” episodes or “global consciousness” ones. It was also used several times in #105, including one where he explicitly stated that a person was well-credentialed and therefore knows what they’re doing.

Now, very briefly, a single argument from someone does not a scientific consensus make. I think that’s an obvious point, and Steve made it several times during the interview that there is no consensus on the issue and individual arguments from authority are just that — arguments from authority and you need to look at their data and methods before deciding for yourself whether you objectively agree with their conclusions.

Edited to Add: I have since written a lengthy post on the argument from authority versus scientific consensus that I highly recommend people read.

Point 3: Going to Amazon, Searching for Books, to Find Interview Guests

Okay, I’ll admit this has little to do with the scientific process on its face, but it illustrates two points. First, that Alex doesn’t seem to understand the purpose/point of scientific literature, and second that fast-tracking the literature and doing science by popular press is one of the worst ways and a way that strikes many “real” scientists as very disingenuous. I’ll explain …

First, I will again reference my post, “The Importance of Peer-Review in Science.” Fairly self-explanatory on the title, and I will now assume that you’re familiar with its arguments. In fact, I just re-read it (and I have since had my own issues fighting with a reviewer on a paper before the journal editor finally just said “enough” and took my side).

To set the stage, Alex claims in the episode:

“Again, my methodology, just so you don’t think I’m stacking the deck, is really simple. I just go to Amazon and I search for anesthesia books and I just start emailing folks until one of them responds.”

As I explained, peer-reviewed papers are picked apart by people who study the same thing as you do and are familiar with other work in the area. A book is not. A book is read by the publishing company’s editor(s) – unless it’s self-published in which case it’s not even read by someone else – and then it’s printed. There is generally absolutely zero peer-review for books, and so Alex going to Amazon.com to find someone who’s “written” on the subject of near-death experiences will not get an accurate sampling. It will get a sampling of people who believe that near-death experiences show mind-brain duality because …

Published books on a fringe “science” topic are done by the people who generally have been wholeheartedly rejected by the scientific community for their methods, their data-gathering techniques, and/or their conclusions not being supported by the data. But they continue to believe (yes, I use the word “believe” here for a reason) that their interpretations/methods/etc. are correct and hence instead of learning from the peer-review process and tightening their methods, trying to bring in other results, and looking at their data in light of everything else that’s been done, they publish a book that simply bypasses the last few steps of the scientific process.

Not to bring in politics, but from a strictly objective point, this is what George W. Bush did with the US’s “missile defense” system. Test after test failed and showed it didn’t work. Rather than going back and trying to fix things and test again, he just decided to build the thing and stop testing.

Point 4: Confusing a Class of Outcomes with a Single Cause

This was more my interpretation of what Alex did in the interview and what Steve pointed out at many times, and it is less generalizable to the scientific process, but it does apply nonetheless.

Say, in cooking, you serve up a pizza. The pizza is the “class of experiences” here that is the same as a class of things that make up the near-death experience (NDE). The toppings of your pizza are the individual experiences of the NDE. Pizzas will usually have cheese, NDEs will usually have a sense of well-being. Pizzas may more rarely have onions, NDEs may more rarely have a white light tunnel associated with them. You get the idea.

Now, from the impression I got, Alex seemed to claim throughout the episode that there was only one way to make a pizza — have an NDE. Steve argued that there were many different ways to make a pizza, and that all those different techniques will in general lead to something that looks like a pizza.

Point 5: Steve’s a Neurologist, Alex Is Not

I need to say before I explain this point that I am NOT trying to say that you need a Ph.D. in the topic to do real science. I do not in ANY WAY mean to imply that science is an elitist thing where only people “in the club” can participate.

That said, I really am amazed by Alex arguing against people who actually have studied the subject for decades. If you are a non-scientist, or even if you are a scientist but have not studied the topic at-hand (like, gee, me talking about near-death experiences while I’m an astrophysicist/geophysicist), then you need to make darn sure that you know what the heck you’re talking about. And you need to be humble enough to, when the actual person who’s studied this says you’ve made a mistake, take that very seriously and look again at what you thought was going on. The probability that you have made a mistake or misunderstood something as opposed to the expert in the field is fairly high.

Again, this is not my attempt to backtrack and myself commit an argument from authority fallacy. However, there is a difference from making an argument from authority fallaciously versus listening to what an authority on the subject says and taking it into account and re-examining your conclusions. It seriously amazes me how much Alex argued against Steve as if Alex were an expert in neurology. It caused him to simply miss many of the points and arguments Steve was making, as evidenced by Steve saying something and then needing to repeat his argument 20 minutes later because Alex had ignored it because Alex has been buoyed by his interviews with previous pro-duality guests.

Final Thoughts

As I’ve stated, the purpose of this post is not to discuss whether NDEs show a mind-brain duality or if it has a purely materialistic explanation. The purpose is to point out that the methods Alex uses are fallacious, and while I know that people have pointed it out to him before, it seems that it has made very little impact upon the way he argues. I believe this is in part due to his need for confirmation bias – he definitely has made his mind up on whether or not psi-type phenomena exists. But I also am fairly sure that it’s because Alex lacks any kind of formal training in science. Because of that, he makes these kinds of mistakes – at least originally – without knowing any better. Now, since it’s been pointed out to him, I think it’s intellectually dishonest to keep making them, but again that’s beyond the purpose of this post.

So, to wrap this all up, non-scientists take heed! Avoid making these kinds of mistakes when you try to do or to understand science yourself. Make sure that you look at the data, not just the conclusions from a paper. Don’t make arguments from authority. Remember that popular books are not the same as peer-reviewed literature. And keep in mind there can be (a) multiple explanations and (b) multiple ways to reach an end point.

September 11, 2008

Logical Fallacy – The Difference Between Argument from Authority and Scientific Consensus


The purpose behind this post is to explain the difference between two things that pseudo-scientists often confuse:  The logical fallacy of “Argument from Authority” versus the concept of a Scientific Consensus.

“Argument from Authority” is effectively the idea that Person A is a supposed authority in Subject B.  Therefore, anything that Person A states about Subject B is true.  For example, I could make the claim that Dr. Crusher is an expert on human anatomy.  The fallacy then goes that if I were to say to my friends that Dr. Crusher says the neck bone is connected to the foot bone, then it must be true because she’s an expert in that field.  But, obviously this is not true.  In other words, the validity of the claim does not follow from the credibility of the source.

Less contrived examples of this are in some of the creationism and intelligent design posts that I have made.  In them, the interviewer often states that their information comes from Dr. So-and-so, a scientist.  This is the argument from authority, though, for any individual scientist is fully capable of self-deceit or deceiving others.

When I debunk these claims on this blog, I try not to use argument from authority for that basic reason.  What I use is the general scientific consensus about what are the facts or general understanding of the subject at-hand.  For example, the existence of the Kuiper Belt and Oort Clouds are accepted by the majority of astronomers — they have reached a consensus.  A scientific consensus represents the most likely explanation given everything that we know at the time.

This, too, may sound like an argument from authority, but it is not.  That is because the reason the argument from authority is a fallacy is that it is based on an individual‘s credibility.  That is why science is supposed to be peer-reviewed – so that you can convince your colleagues of the claim’s validity based upon the scientific evidence.  If the evidence is not real, sufficient enough, and/or can’t be replicated, then your claim will fall by the wayside and not be accepted by the scientific community.  It is only after the claim has been vetted and accepted by the majority of scientists that it becomes a consensus opinion and hence not subject to the logical fallacy of argument from authority.

An example of this in modern science is the global warming “controversy.”  The majority of climate scientists and modelers agree that global warming is in fact occurring and will continue to happen.  This is the scientific consensus.  However, there are still several scientists who disavow this viewpoint.  If a news article were to just quote one of those scientists to say that there is still a scientific controversy over whether or not global warming is occurring, then they have just committed the argument from authority fallacy.  The consensus is that it IS happening, and the debate over whether global warming is “real” or not is pretty much over.

Create a free website or blog at WordPress.com.