Exposing PseudoAstronomy

January 25, 2014

Episode 99: The Saga of the Lunar Ziggurat


Lunar ziggurat
Keeps on giving and giving …
Is there end in sight?

Sorry this one took so very, very long to get out. Jet lag is not fun. I gave two talks while I was in Australia, and both were versions of this, “The Saga of the Lunar Ziggurat.” The audio this time is from a recording at the Launceston Skeptics in the Pub event and a group about two weeks later in Melbourne. It was “live” and hence of variable quality, including street noise. But, the quality isn’t bad.

Advertisements

August 29, 2012

Final Words on the Lunar Ziggurat? Pareidolia, Language, and Conspiracy


Introduction

I’ve now written nearly a dozen posts and 19.5k words (notice I don’t claim 20,000, even though Mike did when he wrote 17,650) on this lunar ziggurat “issue:”

The purpose of this post is to wrap up a few loose ends and return to the beginning, where this started. So there are four sections to this post, then a summary of where we are and why I don’t think there’s much more to be said (though I may revise that thought) on this.

Pareidolia

To quote from Mike’s part 5 of 5 posts on this:

“The actual truth is that there is no such thing as “Pareidolia.” It’s just a phony academic sounding word the debunkers made up to fool people into thinking there is scholarly weight behind the concept. It’s actually a complete sham. … The word was actually first coined by a douchebag debunker (is that my first “douchebag” in this piece?! I must be getting soft) named Steven Goldstein in a 1994 issue of Skeptical Inquirer. Since then, every major debunker from Oberg to “Dr. Phil” has fallen back on it, but it is still a load of B.S. There is no such thing.”

First, let’s get this out of the way: I never claimed that the ziggurat image is pareidolia. It’s clearly not. The question for the ziggurat is whether someone superposed a terrestrial ziggurat on a lunar photograph.

As far as I can tell, Mike’s etymology of the word is correct — he may have used the same resource I did, and I can’t find any previous references. (Updated per comments: Actually, the term goes back at least to the mid-1800s. From an 1867 journal: “… or, there is necessary an external and individual object very nearly corresponding in character to the false perception, whose objective stimulus blends with the deficient subjective stimulus, and forms a single complete impression. This last is called by Dr. Kahlbaum, changing hallucination, partial hallucination, perception of secondary images, or pareidolia. Those manifestations which have been hitherto termed illusions, are only in very small proportion actual delusions of the senses (partial hallucinations). For the most part they are pure delusions of the judgement, while a few are false judgments, founded on imperfect perception, or deceptions produced in the peripheral organs of sense and in external conditions.”)

Regardless, claiming that there is no such thing is about at the level of Mike’s claiming that centrifugal force makes you heavier, an annular eclipse is when the moon is closer than normal to Earth, you measure the major and minor axes of an ellipse from two arbitrary points within it, and dark matter denial (stay tuned for a podcast on that last one at some point).

Whether it has a word or not, it is a real phenomenon. The Rorschach ink blot test was created to make use of pareidolia. People make pilgrimages to distant places because they think Jesus or Mary is visible within the knot of a tree or an oil spot on a building window. And that’s just visual pareidolia.

The whole “EVP” (electronic voice phenomenon) is an example of audio pareidolia where you think you hear something in random noise. Skeptoid had a good episode on this, #105.

I’m really not sure why Mike decided to introduce such a blatant falsehood about human perception when it’s not even relevant to the ziggurat stuff.

Language

Another loose end is language. I’ve commented on this before, but it bears some repeating. Mike’s language throughout this was originally pure insults, and when he realized I have a Ph.D., it turned into mocking conspiracy (see next section for more on that). Mine has been remarkably restrained (in my never humble opinion). I’ve refrained from direct insults except in my initial analysis, in which I said my opinion was that Richard was either lying that he had spent weeks studying the image, or that he was incompetent in that image analysis. As far as I can tell, those are the only direct insults, and they’re relatively minor at that.

Contrast that with, say, Mike’s entire Part 1 blog post on this stuff.

The only real progress we’ve made over the last month is that he’s stopped calling me a hater.

Mike also stated that I feel the need to brand him a “heretic,” which is a term I have never used nor implied. I found that particularly humorous because just this past week, Skeptoid addressed that very issue — the need of pseudoscientists to claim that they are being branded as heretics. To quote from Brian Dunning’s transcript:

“It’s noteworthy that the term “heretic” is only ever used by dogmatic authorities. For example, the Catholic church used it during the Inquisition. I’ve never heard a working scientist call anyone a heretic in reference to their scientific work; instead, they simply point out that they’re wrong and why. But promoters of pseudoscience want to be called heretics, because that would make the scientific mainstream into a dogmatic authority. Whenever you run into a lone researcher who’s outside the mainstream and claims to have been labeled a heretic, you have very good reason to be skeptical.” (emphasis his)

That’s really all I have to say on this aspect, but I thought it important, yet again, to point out.

Another thing about language, though. Mike has claimed to “destroy” my arguments and to provide absolute proof that the ziggurat is real. I, on the other hand, have never used such black-and-white terminology. My position has always been that it is my opinion, based on the available evidence, and based on my analysis that I’ve now gone through at great length, that the ziggurat is more likely to be fake than real.

You might think I’m pointing out semantics, but they’re important semantics. Scientists will rarely speak in terms of absolutes except in rare cases (for example, I’ve made declarative statements of facts about noise in images). When stating their position, it is almost always couched in “the evidence shows [this]” or “based on a preponderance of the evidence.” That’s because science is always open to revision, always open to being shown that previous conclusions were wrong based on new evidence brought to light.

And then there are the declarative statements of the pseudoscientists. There’s also, oftentimes, a failure to admit when they’ve made mistakes, even obvious, trivial ones that don’t really matter for their main arguments. I’ve pointed out many that Mike has made that don’t really impact his argument (and I’ve pointed out many he’s made that do impact his argument), but he’s never back-tracked on any of them.

Nor, as an aside, has he backtracked from any of the mistakes he made in his book, “The Choice.” For example, on August 12, someone wrote on his Facebook page: “Mike likes to say in his defence “I never said that, you are trying to get me to defend things I never said.” Well Mike, you DID say on page 32 of “The Choice” that centrifugal force makes us heavier. So you DID actually say that, and it’s simply completely wrong.”

Mike followed that up immediately with, “Show me the quote asshole. It doesn’t say that. And it was a misprint anyway.” Interesting how something isn’t there but that it was a misprint at the same time that it’s not there being wrong. And just last night, he’s now claiming that his book had two minor misprints, 10 words out of 50,000. Anyway, we’re getting somewhat off-topic, so if you’re at all interested in the many more than two basic, fundamental mistakes in “The Choice,” I’ll direct you to this post.

Fear and Conspiracy

Mike has claimed that it is fear (and money) that has driven me to write about this subject. Fear that my worldview will be turned upside-down, that I’m afraid of aliens or what alien artifacts would imply, that the Brookings Report is my Bible (you know, THE report, as opposed to all the other reports that think-tank has released over the decades), etc.

I know that regardless of what I say he won’t be convinced otherwise, but I’ll say it again anyway: It’s not true. As I have written innumerable times on this blog, the whole reason for doing science is to make new discoveries and overturn paradigms (and this is a real plug post for Skeptoid ’cause Dunning addressed this in the latest episode 324, too).

Let’s do a little test: Raise your hand if you recognize the name Albert Einstein. Now raise your other hand if you recognize the name Francis Everitt. For those who don’t have both hands raised, Everitt is the principle investigator of the Gravity Probe B mission that was a test of some of Einstein’s theories. He’s not a household name because he has upheld a paradigm; Einstein is a household name because he created it. ‘Nough said.

Which brings us to the conspiracy and likely why this will be my last post on this subject. After all this discussion, we’re really, in sum and substance, back at the beginning because almost all evidence that I have brought forth is simply dismissed as either apparently wrong (which I’ve explained is incorrect or likely incorrect) or it’s apparently not trustworthy because it’s all a conspiracy.

Mike claims that I lack honesty, and then he corrected himself on the radio and used the term “intellectual honesty.” Meanwhile, Mike has stated at least twice that he baited me with blog posts to do his work for him in finding other images of the location. And then he both dismissed them as part of the conspiracy while also saying that I had the location wrong, which I showed again was not the case. Lying about one’s reason for something and then dismissing it anyway when it shows what you don’t like … and then accusing me of intellectual dishonesty? Seriously?

I had taken more notes of stuff to say at this point, but after writing the above, I really don’t think any more needs to be said. It won’t convince anyone who believes what Mike says, and the people who don’t believe Mike are already convinced and know roughly what else I was going to say, anyway.

Real Quick – The Ziggy Location, Again

I think this bears repeating. Mike claims that I missed the location of the ziggurat.

Here’s my evidence that it’s where I claim it is, courtesy of “GoneToPlaid:”

AS11-38-5564 and M149377797 Ziggurat Location, D

AS11-38-5564 and M149377797 Ziggurat Location, D

Here’s Mike’s:

Location of Ziggurat According to Mike Bara

Location of Ziggurat According to Mike Bara

And here’s Mike’s with the actual, correct craters matched up:

Location of Ziggurat According to Mike Bara

Location of Ziggurat According to Mike Bara

As you can see, it’s fairly clear that Mike got his craters wrong, misjudging the scale and relative positions. He might be better off in the future paying attention to what the planetary geophysicist who actually studies craters says.

Where We Are Now

The question I asked a few posts ago was: What would it take to falsify your belief? Mike has not directly answered that. He’s also pointed out that he doesn’t give (a few swear words) what I think nor about my challenges. Which is then interesting that he spent so much time on responding.

I laid out three primary categories of reasons that I think it’s fake. Mike’s responses to each can be summarized by the indented, bulleted text below each.

1. Why there is less noise in the NASA original but more noise in Mike’s, and why is there more contrast (more pure black and more saturated highlights) in Mike’s? Both of these pretty much always indicate that the one with more noise and more contrast is a later generation … you can’t just Photoshop in more detail like that.

  • Mike spent a lot of time changing his definition of noise and going through a few misconceptions about it, but in the end, he claims that the noise in his version is texture from a poorly stored photo in an album that was later scanned, hence it’s an earlier generation because it’s from an old print. There is no evidence for this other than what he has interpreted as texture, and I argue that the more likely explanation is that it’s a late-generation copy.
  • Mike claims that there is more contrast in the NASA version because the black shadows are pure black (greyscale 0) while the shadows in his version are between ~18 and 31, so show a range. I argue that the range is due to noise, that the dynamic range of his version is roughly half the NASA version, and that the dynamic range within the bright areas is less in his version, thus supporting my statement that there’s more contrast in his version.
  • Mike misinterpreted my statement about Photoshopping in detail thinking I meant details like craters. The point still stands that once you have a saturated pixel, you cannot bring the information back without assumptions and then modeling what you think it should be.

2. Why other images of the same place taken by several different craft (including non-NASA ones), including images at almost 100x the original resolution of the Apollo photo, don’t show the feature.

  • One claim Mike made is that I missed the location of the ziggurat. I have shown that I did not.
  • He also claims that he does not believe any of the current NASA images nor those from the SELENE (Japanese) mission, nor much of anything else except the old Apollo images, and even then, only some of them such as the one that shows what – at first glance to most normal people – appears on its face to be fake. He clearly stated that if the Chinese images don’t show anything there, it’s because they’ve been pressured to not release them or they’re part of the conspiracy or some such thing.
  • He’s brought in other Apollo photographs of the region taken from orbit and when none showed a convincing feature, he stated that they were airbrushed out. Except for one of them, which to me, looks even less like a pareidolia-ized ziggurat than the first (though Mike doesn’t believe in pareidolia … see above).

3. Why the shadowed parts of his ziggurat are lit up when they’re in shadow, on top of a hill, and not facing anything that should reflect light at them?

  • Much of Mike’s response was that scattered light will brightly light any shadowed region, and he has seen hundreds of examples of this.
  • This is something I have stated – that scattered light can illuminate some things, faintly, but not to the effect it allegedly had on the ziggurat:
  • What he showed were mainly examples of scattered and refracted light within the optics of the camera itself rather than on the surface. One of his examples did have some stuff in shadow that was very, very faintly lit by scattered light.
  • To have the ziggurat shadowed part lit by scattered light would require an incredibly reflective surface that somehow withstood [insert time length] years of asteroid impacts to still reflect all the light that’s scattered onto it from a very small crater wall. I suppose this in itself is not impossible, but it strains credulity, especially when taken with all the other very unlikely things needed to be true for this to be real.

I could go through a timeline of stuff, too, but I don’t think that’s really worth getting into. The string of posts at the beginning shows it pretty well, I think.

So that’s where we are. Neither of us are going to convince the other, of course. I’ve stated for awhile now that this would end in one of probably three ways, in order of increasing likelihood:

  1. Mike would admit it’s likely a fake. (near-0% chance)
  2. Mike would just start to ignore it and move on with his other stuff.
  3. Mike would say that any evidence or explanation I bring forward is wrong or that he can dismiss it because it’s part of the conspiracy. After all, he already claims I’m bought and paid for so nothing I say can be trusted (Mike – how much do you make from promoting your ideas?). (near-100% chance)

Final Thoughts?

Clearly, Option #3 was always the most likely and it is primarily what he’s gone with. Which really gets me back to ¿why are we going through this whole thing, anyway?

I cannot read minds, though I often wish I could, but my guess is that Mike feels the need to defend this considering that he’s put so much effort into it and made it a centerpiece of his book due out in October. It also fits entirely within and reinforces the worldview that he sells (literally). He’s also said he really doesn’t care WHAT my analysis shows nor opinions are, so in that sense, I’m not sure why he’s decided to continue writing so much on it even after Richard Hoagland suggested he not.

I’ve continued on with this in part because I’m stubborn, but also because I’ve been learning and teaching as I’ve been going. In terms of the former, I’ve learned how to obtain and process the SELENE images, how to be more precise, how to create videos, and techniques to bolster my claims. That will help me not just in this kind of education and public outreach work, but also in my career. For example, I’m headed to a conference in Flagstaff, AZ (USA) next month on cratering and I’ll be giving two presentations. My work is going to be challenged. If I can’t defend it, then it falls and I’m back to square one.

In terms of the latter, I’ve tried to gear each blog post on this not just towards the boring “debunking” stuff, but to illustrate to everyone who’s reading how to do their own investigations into this stuff and NOT to take my word for things, and also about how certain things are done and stuff works. For example, I’ve gone into great depth now in a few posts AND two podcasts on image processing and about images in general, such as dynamic range, noise, geometric correction, and how some basic filters work. In an age where nearly everyone who has internet (and so is reading this) has a digital camera, this is useful information to have, and I’ll likely refer back to it in future posts on many disparate topics.

But, by this point, I think the impasse is more obvious than ever. I acknowledge that some of Mike’s ideas are possible (i.e., the poorly stored print idea), but in my opinion they are unlikely – and many unlikely things would ALL need to be true for this – when compared with the null hypothesis: The ziggurat is a hoax by someone. Mike has not admitted to being wrong even when he’s contradicted himself, and pretty much every argument I’ve made that he hasn’t attempted to show is wrong has been relegated to a conspiracy. Nothing I say is going to change his mind on that, though that was pretty much known from the beginning.

I think it is probably time for a graceful exit on this issue by both parties. Mike’s explained his position, I’ve explained mine, and you, the reader, are encouraged to do your own investigation and make up your own mind. If you decide the conspiracy is accurate, and you like the way Mike argues by primarily flinging insults, them more power to you because you’ve made The Choice, go buy Mike’s books, spend money to hear him talk, and have fun.

 

Oh, and P.S., this should not be construed as a concession post by any stretch of the imagination.

August 28, 2012

Dynamic Range and Shadows


Introduction

Part three of four posts in response to Michael Bara’s five-part post that allegedly destroys my arguments that the ziggurat on the moon is not real. Next post is already written (mostly) and will come out shortly, wrapping things up.

Dynamic Range

I really think I’ve covered this enough by this point, but I’ll do it briefly again.

Below is the “original” ziggurat image that Mike has linked to. Below that is a histogram of its pixel values. Note that this looks slightly different from what Photoshop will show the histogram to be. That’s because Photoshop fakes it a teensy bit. This histogram was created using very rigorous data analysis software (Igor Pro) and shows a few spikes and a few gaps in the greyscale coverage:

Original Lunar Ziggurat Image from Call of Duty Zombies Forum

Original Lunar Ziggurat Image from Call of Duty Zombies Forum


Histogram of Pixel Values in Original Ziggurat Image

Histogram of Pixel Values in Original Ziggurat Image

The dynamic range available for this image is 8-bit, or 0 through 2^8-1, or 256 shades of grey (or 254 plus black plus white — semantics). The actual dynamic range the image covers is less than this — its range is only 12 through 169, or 157 shades of grey — just a little over 7-bit.

Compare that with the NASA image (whether you think the NASA image has been tampered with or not, that’s unimportant for this explanation), shown below. Its histogram spans values from 0 through 255, showing that it takes up the entire 8-bit range.

"Ziggurat" Area in NASA Photo AS11-38-5564

“Ziggurat” Area in NASA Photo AS11-38-5564


Histogram of Pixel Values in Original NASA Image of Ziggurat Location

Histogram of Pixel Values in Original NASA Image of Ziggurat Location

The immediate implication is that the ziggurat version has LOST roughly half of its information, its dynamic range. Or, if you’re of the conspiracy mindset, then the NASA version has been stretched to give it 2x the range.

Another thing we can look at is those spikes in the dark end and the gaps in the bright ends. I was honestly surprised that these were present in the NASA one because what this shows is that the curves (or levels) have been adjusted (and I say that with full realization of its ability to be quote-mined). The way you get the spikes are when you compress a wide range of shades into a narrower range. Because pixels must have an integer (whole number) value, rounding effects mean that you’ll get some shades with more than others.

Similarly, the bright end has been expanded. This means the opposite – you had a narrow range of shades and those were re-mapped to a wider range. Again, due to rounding, you can get some values with no pixels in it.

This can be done manually in software, or it can also be done automatically. Given the spacing of them, it looks like a relatively basic adjustment has been made rather than any more complicated mapping, for both the Call of Duty Zombies image with the ziggurat and NASA’s.

The fact that BOTH the ziggurat one and the NASA one have these gaps and spikes is evidence that both have been adjusted brightness-wise in software. But, taken with the noise in the ziggurat one, the smaller dynamic range, and the reduced detail, these all combine to make the case for the ziggurat version being a later generation image that’s been modified more than the NASA one (see previous post on noise and detail — this section was originally written for that post but I decided to move it to this one).

Dark Pixels, Shadow, and Light

What is also readily apparent in the NASA version is that there are many more black pixels in the region of interest. This could mean several very non-conspiracy things (as opposed to the “only” answer being that NASA took a black paintbrush to it).

One is what I have stated before and I think is a likely contributor: The image was put through an automatic processing code either during or after scanning, before being placed online. As a default in most scanning software, a histogram of the pixel values is created and anything darker than 0.1% is made to be shade 0, and anything brighter than 0.1% of the pixels is made to be shade 255. Sometimes, for some reason, this default is set to 1% instead, though it is also manually variable (usually).

Another part of this that I think is most likely is that, as I’ve said before, shadows on the moon are very dark. A rough back-of-the-envelope calculation is that earthshine, the only “direct” light into some sun-shadowed regions on the near side, is around 1000x fainter than sunlight would be. On the far side – and these photos are from the far side – there is no earthshine to contribute.

Which means the only other way to get light into the shadowed region would be scattering from the lunar surface itself. Mike misreads several things and calls me out where I admitted to making a mistake in my first video (Mike, how many mistakes have you made in this discussion? I’ve called you out on two very obvious ones in previous posts, and I call you out on another, below). Yes, you can get scattered light onto objects that are in shadow. If you have a small object casting a small shadow (such as a lunar module), then you have a very large surface surrounding it that will scatter relatively a lot of light into it. That’s why the Apollo astronauts are lit even when they are in the shadow of an object.

However, if you have a very large object – such as a 3-km-high crater rim – that casts a shadow – such as into the crater – then there is much less surrounding surface available to scatter light into the shadowed region. Also, remember that the moon reflects (on average) only about 10% of the light it receives*. So already any lunar surface that’s lit only by scattered light would be 10x fainter than the sun-lit part, and that’s assuming that ALL light scattered off the sun-lit lunar surface scatters into the shadowed parts to be reflected back into the camera lens, as opposed to the vast majority of it that just gets scattered into space.

*As opposed to Mike’s claim: “Since the lunar surface is made mostly of glass, titanium and aluminum, it tends to be very highly reflective.” Um, no (source 1, source 2).

Now, yes, there will still be some light scattered into the shadowed region, but it will be very little, relatively speaking, compared with the shadow of a small object, and it will be even less, relatively speaking, when compared with the sun-lit surrounding surface. For example, let’s look at AS11-38-5606:

Apollo Image AS11-38-5606

Apollo Image AS11-38-5606

This image was taken at a low sun angle, and there are a lot of shadows being cast. And look! They’re all very very black. The photographic exposure would need to be much longer in order to capture any of the minuscule amount of light scattered into the shadowed regions that were then scattered into the camera.

Now, before we go back to the ziggurat, let’s look at another part of this claim. Mike states: “I have seen hundreds, if not thousands, of lunar images where the shadows are far from “pitch-black (or almost pitch-black).””

In support of this, Mike points to images such as AS11-44-6609:

NASA Apollo Photo AS11-44-6609

NASA Apollo Photo AS11-44-6609

If you go to the full resolution version, you do see that the shadowed regions are not pitch black! WTF is going on!?

First, if you check the levels in photoshop, the 0.1% clip has either already been applied or it was never relevant to this image. So this does not falsify my previous statement of that being a possibility for the black shadows in the “ziggurat” one.

Second, let’s look at a few photos later, AS11-44-6612:

NASA Apollo Photo AS11-44-6612

NASA Apollo Photo AS11-44-6612

See that big crater up to the top? That’s the same one that’s near the middle-right in #-6609. Notice that instead of having a greyscale equivalent of around 25%, this time that very same shadow, taken just a few seconds or minutes later but at a different angle and part of the lens has decreased in brightness by over half. Meanwhile, shadows that are in roughly the same position of the frame (as in middle-right versus upper-middle) have a similar brightness as that shadow did in #-6609.

Also, look at the black space above the lunar surface (the right of the frame unless you’ve rotated it). The part of the sky near the top and bottom is ~5% black. The part near the middle is around 13% black. Or, 2-3x as bright, when space should be completely dark in this kind of exposure under ideal optics.

If you’re a photographer, you probably know where I’m going with this: The simplest explanation is that this is either a lens flare from shooting in the general direction of the sun, and/or this is grime on the lens causing some scattering. Less probable but still possible would be a light leak.

And, a closer examination of the shadowed areas does show some very, very faint detail that you can bring out, but only towards the middle of the image where that overall glow is.

Meanwhile, if you look through, say, the Apollo 11 image catalog and look at the B&W images, the shadows in pretty much every orbital photo are completely black. The shadows in the color ones are not.

As a photographer, this is the most likely explanation to me to explain AS11-44-6609 and images like it where Mike points to shadows that are lit:

  1. Original Photography:
    • Image was taken in the general direction of the sun so that glare was present.
    • And/Or, there was dirt on the lens or on the window through which the astronauts were shooting.
    • This caused a more brightly lit part of the image to be in a given location, supported by other images on the roll that show the same brightness in the same location of the frame rather than the same geographic location on the moon.
    • Some scattered light from the lunar surface, into the shadowed regions, off the shadowed regions, into the camera, was recorded.
  2. Image Scanning:
    • Negative or print was scanned.
    • Auto software does a 0.1% bright/dark clip, making the darkest parts black and brightest parts white. This image shows that effect in its histogram.
    • This causes shadows at the periphery to be black and show no detail.
    • Since the center is brighter, there’s no real effect to the brightness, and the very faint details from the scattered light are visible.

Contrast that with AS11-38-5564 (the ziggurat one), which has even illumination throughout. A simple levels clip would eliminate all or almost all detail in the shadowed regions. And/or, the original exposure was somewhat too short to record any scattered light. And/or the film used was not sensitive enough, which is bolstered as a potential explanation by what I noted above – that orbital B&W photography from the mission shows black shadows while orbital color shows a teensy bit of detail in some of the shadows.

In my opinion, that is a much more likely explanation given the appearance of the other photos in the Apollo magazines than what Mike claims, that NASA painted over it.

Which after long last brings us back to the ziggurat. Even in Mike’s exemplar, the stuff in the brightest shadow are BARELY visible, much less-so than the wall of his ziggurat. I suppose if Mike wants to claim that the ziggurat walls are 100% reflective, plus someone has done a bleep-load of enhancement in the area, then sure, he can come up with a way for the walls to be lit even when they are in shadow.

Do I think that’s the most likely explanation, especially taken in light of everything else? No.

Final Thoughts on This Part

One more part left in this series, and by this point I’ve really addressed the main, relevant points in Mike’s five-part series.

Far from “destroying” my arguments, I think at the very, very most, he’s raised some potential doubt for one or two small parts of my argument that, taken individually if one is conspiracy-minded and already believes in ancient artifacts on the moon, then those individual doubts could be used to make it look like the ziggurat is real.

However, taken as a whole, and taken with less of a conspiratorial mindset and a mindset where you must provide extraordinary evidence for your extraordinary claim, and you must show that the null hypothesis is rejected by a preponderance of indisputable evidence, then the ziggurat is not real.

August 16, 2012

Podcast Episode 48: Image Processing and Anomalies, Part 2


Alrighty, episode 48 has been posted, and the companion video has been expectedly delayed.

This episode is almost as long as part 1, and I still left stuff out. Sharpening and filters and stuff like that is going to wait for a later episode. The topics discussed this time are: Dynamic range, noise, rotation and resizing, and levels, curves, and contrast.

The bottom-line with this episode is that even the most seemingly innocuous adjustments – like Auto Levels, or rotate by 10°, or increase the size by 50% – are going to change the information that was originally there, and often it will do it destructively such that you cannot make the reverse change and get the original back.

There was a bit of feedback this time and a discussion of some write-ins for the puzzler last time.

October 20, 2008

The Apollo Moon Hoax: “No Stars” Claim and an Explanation of Dynamic Range


All posts in this series:

Continuing my sporadic series on claims made by people who believe that the US never landed humans on the moon, I am going to address one of the simplest and yet most prolific claims:  There are no stars in the pictures of the moon.  After all, the sky is black and without an atmosphere we should be able to see stars … right?  WRONG

I am going to address this in three ways, first by proposing questions which demonstrate the lunacy (pun intended) of this claim when you actually think about it.  Second, I will address the reason why we don’t see stars in a qualitative way, and third I will explain dynamic range and why stars aren’t visible in a quantitative way.

Method 1 – Why This Doesn’t Make Sense

The claim effectively goes:  On the moon without an atmosphere in the way, the sky should be filled with stars.  Since there aren’t stars, it must be fake.  In fact, it must be a really bad fake because NASA knew that they wouldn’t be able to figure out where every star goes on their black backdrops for their sets because other people would realize they are in the wrong place, so they just eliminated the stars all together and made the backdrops completely black.

This shows one of the major problems with conspiracy theories of this scale – you have to grant the conspirators a huge amount of power, intelligence, and influence, yet they have to be so unbelievably dumb as to make simple mistakes that the conspiracy theorists can then point out.

When I do my planetarium show on the Apollo Moon Hoax (“Why We Did NOT Not Land on the Moon”), I have the operator bring up the star projector along with a 360° lunar panorama to “simulate” what the conspiracy theorists say it should be like if we’re on the moon.  And it’s a good simulation.  Why?  Because the stars should be in the same place as they are on Earth!  Even though the moon is 384,400 km from Earth, that’s pretty much nothing in relation to where we would see stars from the Apollo cameras.  Only if the astronauts were to do very precise astrometry with very long-focal length lenses (as in telescopes) would they be able to discern any deviation from where the stars would appear from Earth, and even then, it would only be for the very closest stars to our solar system.

So, the fact that we have great planetarium star projectors that simulate the positions of thousands of stars means that NASA should have easily been able to figure out where to put the stars.  And not just that, but if NASA couldn’t figure out where to put the stars – when they had 1 out of every 360 Americans working on the Apollo program in some manner – how would someone else be able to figure out that they were in the wrong place when the exact orientation and location of every single Apollo photograph is simply not available to them?

It simply doesn’t make sense for NASA to have purposely left the stars out.

Method 2 – A Qualitative Explanation of Dynamic Range

Dynamic range (discussed with numbers below in Method 3) is the ability to observe/record/detect a range of values.  For example, if you look at an oven thermometer, it probably has numbers for 100° to maybe 500°.  That’s the dynamic range of it, it can’t record anything below 100° nor about 500°.  Same thing with a car’s speedometer – its dynamic range is probably 0 mph to around 150 mph.  Any speed above 150 and it’s useless.

With cameras, it’s a little more complicated because you can control the “window” of dynamic range with things like shutter speed and aperture.  So let’s go back to the thermometer example – the one above has a range of 400°.  Let’s say I re-calibrated it such that it can now record between -100° and +300°.  Its dynamic range is still the same, but I’ve changed what temperatures it’s sensitive to in the same way changing the shutter speed of a camera will change what light levels can be captured before they’re too dim to be recorded or too bright to be completely washed out.

This is what happened with the stars:  The dynamic range of the camera film was too small to both properly expose the lunar surface and to record stars.  And since, for the most part, the astronauts went to the moon to explore the lunar surface and not do stellar astronomy, they didn’t take pictures of the stars …

… except they actually did (example photo on the right).  Conspiracy theorists never actually bring this up because it’s one of those incontrovertible pieces of evidence that we actually did go to the moon.  Ultraviolet light is blocked by our atmosphere and so it doesn’t reach the ground (for the most part), which is a good thing for life such as us.  To do UV astronomy, you have to go above Earth’s atmosphere, and so the Apollo 16 astronauts actually brought UV cameras to the moon.  They took photographs that were made available, and they were the first of their kind showing features in the far-UV spectrum.  Many years later, when space-based UV telescopes became operational, they confirmed that the Apollo 16 photographs were real because they showed the same things.

Method 3 – A Quantitative Explanation of Dynamic Range

This is a discussion of dynamic range with more numbers.  For ease of argument, let’s say that the dynamic range of the camera film used by Apollo is between 1 and 100.  If only 1 piece of light or less hits the film, the film records it as black.  If 100 pieces or more hit the film, it’s recorded as white.

Now let’s say that the moon reflects between 6000 and 20,000 pieces of light per second, while any one reasonably bright-looking star hits the moon with more like 1 piece of light per second.  (This is actually the approximate scaling between the two.)  This is not because of any atmospheric effects (Earth’s atmosphere transmits over 90% of visible light through it, and it wouldn’t selectively screen out star light from moon light, anyway), but simply because the stars are much fainter because they’re much farther away.

As you can see right away, we have a problem:  Our film can only record between 1 and 100 counts, but the moon reflects over 100 times that amount of light per second.  That’s why we have a variable shutter speed.  We can expose the film for less than 1 second.  In this case, if we expose the film for 1/250th of a second, then the film should only pick up between (6000/250 = ) 24 and (20,000/250 = ) 80 pieces of light in that picture.  Since 24 and 80 are both between 1 and 100, then we have properly exposed the moon, getting its brightness within the dynamic range of the camera.

Now let’s look at the stars.  In that 1/250th second photograph, there’s only a 1 in 250 chance that a piece of light will enter the camera and be recorded by the film.  It’s very unlikely.  And so, to the film, that star wouldn’t even be there – it wouldn’t be detected – because it’s below the dynamic range of the film.

Now let’s say you actually did want to photograph the stars.  With 1 piece of light per second, you would probably want to take a picture for around 50 seconds (to get it in the middle of your dynamic range).  But, if you take a picture for 50 seconds, the amount of reflected light off the moon would be over 300,000 counts, and this is way above our dynamic range limit of 100 counts.  So while that star may be properly exposed in 50 seconds, the moon itself would be over-exposed and appear all white.

That is why the dynamic range of the film is not good enough to see both stars and the moon’s surface in the same length of exposure


To summarize, the basic reason there are no stars in the Apollo photographs of the lunar surface and sky is because the cameras were set to expose the lunar surface properly, and those exposures are too short to record stars.

In fact, you can easily do this experiment yourself:  On a night when there’s a fairly full moon out, or even a half-full moon out, go outside and try to photograph it.  If you use an aperture somewhere around 4.5 to 6.3, you will likely need a shutter speed between 1/200 and 1/100 of a second to properly expose the moon.  Now look at your photos.  Do you see any stars?  The answer will be “no.”

Now try to photograph the stars.  You will likely need to expose for at least several seconds in order to see any stars in your picture.  Now go back to the moon and use the same exposure settings, aperture and shutter speed.  You may get stars in the field this time, but the moon will be a pure white ball, over-exposed.

This simple experiment, along with all the arguments above, should clearly show why the claim that there are no stars in the Apollo lunar photographs does not mean that the lunar landings were faked.

Create a free website or blog at WordPress.com.