Exposing PseudoAstronomy

March 14, 2015

Podcast Episode 128: The Saga of Comet Hale-Bopp and its Fugacious Companion, Part 2

Great Comet Hale-Bopp,
Part 2: On remote viewing
The comet’s partner.

Second in the three-part series: The saga of the great and powerful Comet Hale-Bopp and the conspiracy, mystery, intrigue, lies, schemes, hoaxes, and suicides that accompanied it. The idea came when I started listening to a new Art Bell set of interviews that I had obtained, and I realized early in the episode (November 14, 1996) that I was listening to THE interview that started the whole thing. I found another dozen or so interviews and decided to make an episode out of it that has blossomed into three episodes.

The three episodes are meant to be stand-alone in that they don’t need the others to be understandable. But, put them together and they tell the story in a lot more depth. This second part is about one of the primary drivers behind the Hale-Bopp companion, Courtney Brown, and his remote viewing claims. While he provided the hoaxed photographs to Art Bell and Whitley Strieber (per Part 1), he claimed that all of his evidence for the companion was “good data” and based on remote viewing.

Part 3 will be on the Heaven’s Gate cult and aftermath and continued conspiracy, including a brief entry by Richard Hoagland.

I have decided that, while I may do my interview with Dave Draper on potentially pseudoscientific conference abstracts before Parts 2 or 3 are finished, I will wait to put it out, such that Parts 1-3 will be back-to-back-to-back.

While there was one logical fallacy in the episode (argument from authority), I instead used the segment to discuss part of the skeptical toolkit: The BS Meter. And, what should trigger it and what you should do about it. The bottom-line is that you should question any claim that sets off your BS meter, and even when something seems innocuous and small and not even part of what could have led to the anomalous result, you should still check it.

And, finally, I plan to do a small tribute to Leonard Nimoy, no earlier than April 1. The tribute will be from you: If he or any of his characters affected you (especially as perhaps related to an interest in science or astronomy or critical thinking), please send in a few sentences. Or, record no more than 30—60 seconds and send the file to me. I will read/play them either on episode 130 or 131.

Finally, this episode is coming out a bit early because I’m leaving for a week for a planetary science conference and won’t be able to do much of anything else while I’m there.

March 2, 2015

Podcast Episode 127: The Saga of Comet Hale-Bopp and its Fugacious Companion, Part 1

Great Comet Hale-Bopp,
Part 1: On the claimed photos
Of your companion.

I’ve been working on this episode for awhile: The saga of the great and powerful Comet Hale-Bopp and the conspiracy, mystery, intrigue, lies, schemes, hoaxes, and suicides that accompanied it. The idea came when I started listening to a new Art Bell set of interviews that I had obtained, and I realized early in the episode (November 14, 1996) that I was listening to THE interview that started the whole thing. I found another dozen or so interviews and decided to make an episode out of it. About three months and over 10,000 words of notes and transcripts later, this is the release of Part 1 of what will be a three-part series on Hale-Bopp.

The three episodes are meant to be stand-alone in that they don’t need the others to be understandable. But, put them together and they tell the story in a lot more depth. This first part is about the image – the “hard science” – claims about the companion. Next one will be on the remote viewing claims and aftermath, and the third will be on the Heaven’s Gate cult and aftermath and continued conspiracy, including a brief entry by Richard Hoagland.

I have decided that, while I may do my interview with Dave Draper on potentially pseudoscientific conference abstracts before Parts 2 or 3 are finished, I will wait to put it out, such that Parts 1-3 will be back-to-back-to-back.

There were two logical fallacies pointed out in this episode: Argument against authority, and correlation ≠ causation (cum hoc ergo propter hoc).

And, finally, I plan to do a small tribute to Leonard Nimoy, no earlier than April 1. The tribute will be from you: If he or any of his characters affected you (especially as perhaps related to an interest in science or astronomy or critical thinking), please send in a few sentences. Or, record no more than 30—60 seconds and send the file to me. I will read/play them either on episode 129, 130, or 131.

December 1, 2014

Podcast Episode 121: James McCanney’s Views on Other Stuff in the Universe, Part 2

Some random claims based on
Electric Universe thinking
By James McCanney.

The long-awaited sequel to the critically-acclaimed (ha!) first part on James McCanney’s ideas about stuff. As I said last time, I’ve wanted to talk about James McCanney’s ideas ever since I heard him on Coast to Coast AM, and doing so isn’t hard — he’s been on the show dozens of times over the last two decades. I’ve heard him talk about a lot of things, but I mostly remembered him sounding like a broken record talking about how comets “discharge the solar capacitor.” This episode gets at many of his other ideas, though there are still many others and I reserve the right to do a Part 3 in the future.

Because this episode runs nearly 55 minutes, the only additional segment is two New News items (one sent in by Graham and the other by Callum (@ApproxPurified). Also, I plan on the next episode to be about conspiracies surrounding the Rosetta mission and its now host comet, so if you happen to see something relevant, please let me know before December 12, 2014.

P.S. My internet connection is being flaky — please let me know if you have issues downloading this episode or getting it to show up in iTunes or another RSS reader.

November 18, 2014

Episode 120: James McCanney’s Views on Comets, Part 1

Comets: Are they weird,
Electrical phenom’na,
Or just dirty snow?

My first personal foray into electric universe claims (don’t forget part 1 and 2 intros via an interview with Tom Bridgman). I’ve wanted to talk about James McCanney’s ideas ever since I heard him on Coast to Coast AM, and doing so isn’t hard — he’s been on the show dozens of times over the last two decades. I’ve heard him talk about a lot of things, but I mostly remembered him sounding like a broken record talking about how comets “discharge the solar capacitor.”

I’ve been putting him off for awhile because I really really don’t like Electricity & Magnetism, so doing this was going to be a bit out of my comfort zone. It ended up not being that far out, thanks in part to generous help by Phil Plait’s Bad Astronomy website and the 2012 Hoax website.

However, listening to Coast to Coast for clips took a very long time. Two straight days, listening at 1.7–2.5x speed. I took pages of notes, including numerous direct quotes. I mined these and wrote an incredibly lengthy episode that used 18 clips totaling nearly 15 minutes.

Then I decided to split it into two parts. This first part covers just his ideas about comets. This episode also has a Q&A (first time in many episodes) and Feedback.

September 21, 2014

Philosophy: On Skepticism and Challengers


I’m taking a break because I don’t want to work on this proposal at the moment. I’m great at procrastination, when I get around to it.

Anyway, I want to muse philosophical-like for a few minutes, reacting to some recent things I’ve heard regarding skepticism and people challenging your views.

“Healthy” Skepticism

George Noory, the now >1 decade primary host of late-night paranormal radio program Coast to Coast AM, had Dr. Judy Wood on his program for the first two hours of his “tribute” to the September 11, 2001 (I refuse to call it “9/11″ because I think that trivializes it — we all have our quirks) terrorist attacks. Judy Wood is author of the book, “Where Did the Towers Go?” Her thesis is that a directed “zero-point energy” weapon “dustified” the towers, or that they suffered “dustification.”

It was a very difficult interview for George, I’m sure, since Judy refused to speculate on anything. I’m also growing slightly more convinced that he may have questions written down on cue cards because he asked the exact same question a few minutes apart (“how much energy is required to ‘dustify’ the towers?”) and she refused to speculate both times. Just repeating what she “knows she knows that she knows.” She is also incredibly defensive and clearly doesn’t know what the word “theory” is.

All that aside, early in the interview, George did a tiny disclaimer saying that they always get people writing or calling in saying that doing shows like that is unpatriotic and/or disrespectful to everyone who died in the attacks and the aftermath. But, that it’s healthy to have skepticism and to always question the official story.


Okay, George, you are correct in theory (yes, I used that word purposely), but completely wrong in practice. Skepticism does not mean doubting or denying or not accepting everything. Skepticism, as we use the term today, means to not accept something unless we have good evidence to do so. It’s a method of investigation, to look into claims, examine the evidence, and put it in context with all the other evidence and plausibility given what has been established about the way the world works.

At least, that’s how I tend to define it, and it’s how I tend to practice it.

Do I believe “the government” on everything? No. For example, President Obama recently announced that the US is going to take on ISIS in some form or fashion, but that there would be “no boots on the ground.” Given past experience when politicians have said that, and given the realities of ISIS and the Middle East area in general, I’m … shall we say … “skeptical,” and I will reserve acceptance of his statement until it actually plays out.

Do I believe that NASA “tampers” with photographs of the moon to “airbrush out” ancient ruins and alien artifacts, or do I accept what “they” give us? (I put “they” in quotes because “NASA” is an organizational administration within the federal government; it’s the people involved who do everything, and it’s contractors and grant awardees who deal with data and other things.) I accept what they give us. I tend to not question it.

Why? Because of past experience and my own experience in investigating the claims to the contrary. I look at other images of the area from multiple spacecraft. From spacecraft from other countries. They are consistent. They don’t show different kinds of anomalies you’d need in order to have the scenario that the conspiracists claim is happening. They do show what you’d expect if the data were faithfully represented, as it was taken, after standard spacecraft and basic data reduction steps (like correcting for geometric distortion based on how the spacecraft was pointed, or removing artifacts from dust on the lens).

George, there is a difference between healthy skepticism – looking into claims – and beating a dead horse. Or beating over 3000 dead victims to a terrorist attack.

There is no plausibility to Dr. Wood’s arguments. Her claims made to back them up are factually wrong. (Expat has addressed some of them in his blog, here, here, here, and here.) She is ridiculously defensive, refuses to delve further into her model to actually back it up, and has a name for herself only because people like you give her airtime to promote her ideas. True skepticism is to examine the arguments from both sides and draw a conclusion based on what’s real and what’s most probable. Which has been done by thousands of people who debunk every single claim the conspiracists make about the September 11, 2001, terrorist attacks. But you won’t go to them. You bring on Dr. Wood, or people from the Architects and Engineers for Truth.

A one-sided investigation is not faithful, not genuine, and is disrespectful to everyone.

Challenging Your Conclusions

In a related vein, but completely different context, I was reading through my RSS news feeds and came upon the headline to the effect (because it’s disappeared from my feed since I started to write this): Michelle Obama explains to school children that challenges [probably, though I read it as “challengers”] are a good thing.

So true. Most people in the skeptical movement know that this is “a True.” Most scientists know this is “a True.” Most pseudoscientists are vehemently against being challenged.

I’ll take the subject of my last blog post to illustrate this example, not that I want to pick on him per se, but he’s the last person I listened to in detail that I can use to illustrate this point, other than Dr. Wood, who I discussed much more than I want to in the above section. Mike Bara.

Mike was somewhat recently on another late-night (though not quite as late) internet radio program, “Fade to Black,” where Jimmy Church is the host. It’s on Art Bell’s “Dark Matter Radio Network,” where I was also a guest several months ago. I have since called in twice to the program, both times to discuss the possibility of debating Mike Bara on some of his claims.

The very brief backstory on that is Mike was on Coast to Coast, and basically attacked me. I called in, George said he’d arrange a debate, then stopped responding to my e-mails. A year later, the same thing happened, and George actually e-mailed me (I couldn’t call in because I lost power that night — happens sometimes in the mountains of Colorado, though we now have a generator), he wanted to arrange a debate, he claimed on air that I had stopped responding to his e-mails … and then he stopped responding to mine so the debate never happened. Later, I learned that it was Mike who may have dropped his acceptance. I related that to Jimmy.

Jimmy asked Mike if he’d be willing to debate me, and Mike’s response was effectively, “what do I get out of it?” Mike opined that what I (Stuart) would get out of it is a platform and attention which, according to Mike, I so desperately want (or maybe that’s Michael Horn’s claim about me … I get some of what each says is my motivation a bit confused). Meanwhile, Mike already has attention, so he said that he wouldn’t get anything out of it and therefore didn’t want to do it. Jimmy countered that it would make great radio (which I agree with).

I did call in, but unfortunately Mike got dropped when Jimmy tried to bring me in. It was the last 10 minutes of the program, anyway, so I told Jimmy what I thought we both (me and Mike) would get out of it: We would each have to back up what we say, and when challenged, it forces us in a radio setting to make our arguments concise, easily understandable, and actually back up what we’re saying.

That’s what we do in science: We have to back up what we say. We expect to get challenged, we expect to have people doubt our work, we expect to have people check our work, and we expect people to challenge our conclusions. Only the best ideas that can stand up to such scrutiny survive. That’s how science progresses. That’s where pseudoscience fails. Science is not a democracy, and it is not a communistic system where every idea is the same and equal as every other idea. It’s a meritocracy. Only the ideas that have merit, that stand up to scrutiny, survive.

The point of science is to develop a model of how the world works. If your model clearly does not describe how the world works and make successful predictions (and have repeatable evidence and have evidence that actually stands up to scrutiny), then it gets dropped.

Final Thoughts

I hope you found these musings at least mildly interesting. And let me know if you agree or disagree. Challenge my ideas, but if you do so, make sure you back them up!

September 24, 2013

David Wilcock: Skeptics Argue Because They Get High Off It


I’m behind on a lot of things these days. The Colorado flooding and being with out power for a week put me more behind. On my To Do list was to address a quote from August 19, 2013, spoken by David Wilcock on the paranormal late-night radio program Coast to Coast AM.

The Quote

This sucker is long and it took much longer to transcribe it than the ~3 min 45 seconds it comprised. It started at 9:37 into Hour 3:

What we’re seeing is, okay, not only is this time pattern is cyclical, but we can use those cycles to make predictions about things that haven’t actually happened yet, and it happens that we’re at the end of a whole big cycle, 25,000 years, and what it predicts in over 30 ancient cultures — so, I’ve harped on the Bible here, but this is not a Christian– a strictly Christian prophecy, it’s over 30 ancient cultures that all said we’re going to go into a golden age, and they gave very specific mathematical codes about these various cycles, and-and you know we go through that in the book.

So, the point is, we have a global nemesis. Now skeptics, to some degree, have been influenced by this force that tries to take anybody who tries to look at the very real corruption in our world and–and–and marginalizes them.

And so, there was a fascinating scientific study that just came out the other day, and I love to quote references but I don’t remember who it was because I just read it and I haven’t written about it yet, so I just have to say there was a study – right for now, but I’ll have it in an article coming up – and, a group of scientists recently researched why people laugh. And it’s amazing that it’s been so long before someone really got into that! And what they ultimately concluded was, similar to things like hunger or thirst or sexual arousal or being tired and wanting to go to sleep, that our biology has given us a basic mechanism that wants to look for errors and mistakes in our environment, and ma– and tickles our brian when we find a mistake or an error in our environment. And that’s the basis of all humor, that’s why we laugh. After all this scientific research they did, that’s the conclusion they came to. And I think they’re right. Um, John Clease, from the Monty Python Flying Circus said that humor is about embarrassment, and you’re embarrassed when things don’t go the way they should for you. Because there’s an error or mistake in your environment.

So, I think that a lot of times what skeptics are doing is that they’re so conditioned to believe that anybody who talks about the stuff that’s on your show or anybody who’s out there listening to your show, those people are an error and a mistake in the environment, and these skeptics are so much– th-they get such a serotonin rush – such a high – off of being right and making other people wrong that it is like an addition.

And then they start trolling and then they start writing all these hateful comments in discussion forums, and every time they do that, they’re getting high. And they’re actually getting high off of like, you know, denigrating people. But, I make a very interesting– there’s a– there’s a whole chapter in the book where I talk about scientific proof of energy vampires, and we actually all have a certain degree of vital energy, and other people can in fact absorb your vital energy by denigrating you, humiliating you, shaming you, and creating a negative emotional state in you. And I actually spell out, with a great deal of scientific evidence, that this actually works, and that people can get totally addicted to that rush that they get, because there is an energy transfer, they actually do absorb your energy, and on a microbiological level we see it happening in laboratory experiments.


The setup for this quote was that he was talking about cycles of enlightenment and spiritual progress and history repeating. That lead into the first paragraph.

And then something about humor and some study that says something and therefore the stuff about skeptics. It’s really those last two paragraphs, roughly the last ~1 min 30 sec of the quote, that I wanted to address.


I can’t speak for other people because I am not other people. But I can guarantee that I don’t get a “high” from showing that people are wrong. I normally get a headache. Especially from listening and transcribing nearly four minutes of B.S. from Wilcock. (For those who don’t know, Wilcock now makes a living off of claiming to be the reincarnation of Edgar Cayce, and also making various spiritual or practical predictions that never come true — such as alien disclosure in the fall of 2010. I guess I just got a little giddy from pointing that out.)

I would also point out that skeptics don’t “make other people wrong.” Other people are wrong. Skeptics use critical thinking of the claims and actual demonstrable and repeatable observations of the world around us to analyze claims and make a conclusion based on those claims. It just so happens that the vast majority of the ones that David makes – and that are made on C2C – are wrong.

I’m not addicted to pointing that out. I consider it a public service and personal growth. I’ve discussed this many times before, but briefly, (1) it helps me know how to qualify and better present my data as a scientist, and (2) critical thinking is important in all aspects of everyday life and not just to deciding if Planet X is going to kill you next year.

Final Thoughts

Just after talking about how skeptics get high on “making other people wrong,” lamenting how skeptics post “hateful comments in discussion forums,” and generally complaining that they’re hurtin’ his new-age buzz (my terms), he talks about energy vampires. And how there is allegedly “scientific evidence” that there is an actual transfer of “energy” when you denigrate someone and get high off it. Evidence on the microbiological level.

Now, in fairness, he did go on to cite one or two of about five studies that get trotted out on Coast to Coast whenever this kind of claim is made. Studies that I’ve looked into but have either not been able to verify or find anyone who’s replicated them (see my podcast on David Sereda’s claims, part 1, specifically about Masaru Emoto’s work on water).

So, yeah. Energy vampires. David, sometimes you make it too easy.

August 22, 2013

Podcast Episode 84: David Sereda’s Claims Clip Show, Part 2

David Sereda:
UFOs, quantum, new-age …
Let’s see what’s out there.

Whew. This one took a long time to put together and get through. Eleven clips from Coast to Coast with David Sereda making various claims and me explaining what parts of physics, astronomy, and general astronomy are incorrect.

The purpose of this episode is to move on from the background I gave in Part 1 to a very clip-y show with lots of different claims to explore. It’s an interesting episode, I think. Not only for style, but for content. Let me know what you think.

August 11, 2013

Podcast Episode 83: David Sereda’s Claims Clip Show, Part 1

Filed under: astronomy,new-age,physics,podcast — Stuart Robbins @ 10:16 pm
Tags: , , , , ,

David Sereda:
UFOs, quantum, new-age …
Let’s see what’s out there.

After realizing I had around 10 minutes of clips, lots already written, and more I wanted to write, this is a Part 1 of 2 mini-series on the claims of David Sereda.

The purpose of this episode is to provide a background into how Sereda went from a UFOlogist to a more generic new-ager with a few specific claims of his own. I then go into two of his main claims (of MANY that I’ll go more into next time) and wrap up with when giving your professional background becomes an argument from authority logical fallacy. Actually, almost everything that Sereda says is a Name that Logical Fallacy exercise.

This episode “required” me listening to approximately 40 hours of Coast to Coast AM. I took nearly 10,000 words of notes. I think I may take up drinking …

Again the new blog is WND Watch.

June 4, 2013

My Additional Project: C2C Watch Blog … Reprinted Post on James McCanney


A few weeks ago, while on my 40-minute morning walk to burn 260 calories – the number in an average-sized doughnut (yes, I count calories in units of doughnuts), I was absolutely disgusted by Coast to Coast fill-in host John B. Wells and his guest, Steve Pieczenik, talking about stupid things such as the government will charge you for having a baby because of gene patents, but then just disgusting things like “no child was killed at Sandy Hook.” I mean, stuff that you might expect to hear out of a psychopath (and I’m using the definition here – someone who is characterized by antisocial behavior, a diminished capacity for remorse, and poor behavioral controls).

It was really disgusting.

That’s when I reached out to a few people and decided to start a community blog, Coast to Coast AM Watch. The idea is that those of us who sometimes listen to the program and hear something particularly outrageous can blog about it and post real information. (And if you think this is you and you can contribute, let me know and I’ll set you up with an account.)

To cross-pollenate a bit, I am going to sometimes cross-post. So, here is a post I wrote a few days ago on James McCanney. I haven’t written about him before on this blog before because he’s a bit like Hoagland: He’s built up such a mythology that it’s very difficult in just a single post to get into it all. I do plan to put out a podcast episode later this year about some of his main stuff.

Note that I plan to be a bit more snarky on that blog, and this post reflects it.

The Cross-Post

James McCanney is a not infrequent guest on C2C, usually for a quick news blurb in the first hour, or for an hour here-and-there. May 23 saw him in the third hour with questions from the audience in the second half of that.

Trying to explain McCanney’s misconceptions is a bit like saying you’re going to spend an hour debunking Answers in Genesis: It can’t be done. Nearly every sentence he says is just plain wrong. Until I do my own podcast summarizing some of the major issues, I’ll direct you to Phil Plait’s take-down of about half a dozen of them.

In the spirit of this blog, where just a few things that catch our ears each show are things we want to address, I’m going to take on a claim he made in the early part of the hour. To summarize, he stated that we had weird weather in the US throughout Spring and early Summer. Since McCanny believes that all weather on Earth has to do with electrical interactions with stuff in the solar system, he searched and searched for something to explain it. And lo!– he found Saturn. That’s right … somehow, an electrical connection with the ringed planet made it snow here in America in the spring. The occasional teacher in me says: Please show your work.

That’s a problem with people like McCanney: They claim to make all these predictions (some of which are bound to come true) and therefore claim to overthrow all of science and yet they haven’t shown how the math works out.

In this case, let’s assume we believe Maxwell’s equations and that electricity follows an inverse-square law for intensity (it’s called a “law” for a reason, mind you — it’s a fact that the intensity of electricity falls off with the square of the distance, so if you’re 5x farther away from something, the intensity is 1/25 (1/52)).

Let’s also assume that we have a spacecraft that, gee, operates on electricity that’s in orbit of Saturn. Which we do. It’s called Cassini and has been in orbit since 2004. Cassini does not orbit in a nice, circular orbit, but it’s widely variable. From what a quick search got me, we can put a very rough number of 1 million km from Saturn. For a very round number, Saturn’s a bit over 1 billion km from Earth.

Now let’s apply the inverse-square law: ( (1 billion) / (1 million) )2 = (1 thousand)2 = 1 million.

So an electrical connection with Saturn, at Earth, would necessarily have had to have been 1 million times stronger at Cassini. Even if we’re talking some sort of directed energy weapon like a Star Trek phaser, the electrical discharge from Saturn would have had to have done something to Saturn’s magnetosphere that would have affected Cassini. You can’t get out of this. A 1 million-fold increase of electrical output magically happening from Saturn would have fried Cassini, and yet it’s still operating just as well as before.

That’s about as kindly as I can put this, that it’s just WRONG. And you can now see why a debunking of McCanney would take a very very long time: Just from those two or three sentences, I spent 500+ words.

May 26, 2013

Properly Designing an Experiment to Measure Richard Hoagland’s Torsion Field, If It Were Real


Warning: This is a long post, and it’s a rough draft for a future podcast episode. But it’s something I’ve wanted to write about for a long time.

Richard C. Hoagland has claimed now for at least a decade that there exists a “hyperdimensional torsion physics” which is based partly on spinning stuff. In his mind, the greater black governmental forces know about this and use it and keep it secret from us. It’s the key to “free energy” and anti-gravity and many other things.

Some of his strongest evidence is based on the frequency of a tuning fork inside a 40+ year-old watch. The purpose of this post is to assume Richard is correct, examine how an experiment using such a watch would need to be designed to provide evidence for his claim, and then to examine the evidence from it that Richard has provided.


Richard has often stated, “Science is nothing if not predictions.” He’s also stated, “Science is nothing if not numbers” or sometimes “… data.” He is fairly correct in this statement, or at least the first and the last: For any hypothesis to be useful, it must be testable. It must make a prediction and that prediction must be tested.

Over the years, he has made innumerable claims about what his hyperdimensional or torsion physics “does” and predicts, though most of his predictions have come after the observation which invalidates them as predictions, or at least it renders them useless.

In particular, for this experiment we’re going to design, Hoagland has claimed that when a mass (such as a ball or planet) spins, it creates a “torsion field” that changes the inertia of other objects; he generally equates inertia with masss. Inertia isn’t actually mass, it’s the resistance of any object to a change in its motion. For our purposes here, we’ll even give him the benefit of the doubt, as either one is hypothetically testable with his tuning fork -based watch.

So, his specific claim, as I have seen it, is that the mass of an object will change based on its orientation relative to a massive spinning object. In other words, if you are oriented along the axis of spin of, say, Earth, then your mass will change one way (increase or decrease), and if you are oriented perpendicular to that axis of spin, your mass will change the other way.

Let’s simplify things even further from this more specific claim that complicates things: An object will change its mass in some direction in some orientation relative to a spinning object. This is part of the prediction we need to test.

According to Richard, the other part of this prediction is that to actually see this change, big spinning objects have to align in order to increase or decrease the mass from what we normally see. So, for example, if your baseball is on Earth, it has its mass based on it being on Earth as Earth is spinning the way it does. But, if, say, Venus aligns with the sun and transits (as it did back in July 2012), then the mass will change from what it normally is. Or, like during a solar eclipse. This is the other part of the prediction we need to test.

Hoagland also has other claims, like you have to be at sacred or “high energy” sites or somewhere “near” ±N·19.5° on Earth (where N is an integer multiple, and “near” means you can be ±8° or so from that multiple … so much for a specific prediction). For example, this apparently justifies his begging for people to pay for him and his significant other to go to Egypt last year during that Venus transit. Or taking his equipment on December 21, 2012 (when there wasn’t anything special alignment-wise…) to Chichen Itza, or going at some random time to Stonehenge. Yes, this is beginning to sound even more like magic, but for the purposes of our experimental design, let’s leave this part alone, at least for now.

Designing an Experiment: Equipment

“Expat” goes into much more detail on the specifics of Hoagland’s equipment, here.

To put it briefly, Richard uses a >40-year-old Accutron watch which has a small tuning fork in it that provides the basic unit of time for the watch. A tuning fork’s vibration rate (the frequency) is dependent on several things, including the length of the prongs, material used, and its moment of inertia. So, if mass changes, or its moment of inertia changes, then the tuning fork will change frequency. Meaning that the watch will run either fast or slow.

The second piece of equipment is a laptop computer, with diagnostic software that can read the frequency of the watch, and a connection to the watch.

So, we have the basic setup with a basic premise: During an astronomical alignment event, Hoagland’s Accutron watch should deviate from its expected frequency.

Designing an Experiment: Baseline

After we have designed an experiment and obtained equipment, usually the bulk of time is spent testing and calibrating that equipment. That’s what would need to be done in our hypothetical experiment here.

What this means is that we need to look up when there are no alignments that should affect our results, and then hook the watch up to the computer and measure the frequency. For a long time. Much longer than you expect to use the watch during the actual experiment.

You need to do this to understand how the equipment acts under normal circumstances. Without that, you can’t know if it acts differently – which is what your prediction is – during your time when you think it should. For example, let’s say that I only turn on a special fancy light over my special table when I have important people over for dinner. I notice that it flickers every time. I conclude that the light only flickers when there are important people there. Unfortunately, without the baseline measurement (turning on the light when there AREN’T important people there and seeing if it flickers), then my conclusion is invalidated.

So, in our hypothetical experiment, we test the watch. If it deviates at all from the manufacturer’s specifications during our baseline measurements (say, a 24-hour test), then we need to get a new one. Or we need to, say, make sure that the cables connecting the watch to the computer are connected properly and aren’t prone to surges or something else that could throw off the measurement. Make sure the software is working properly. Maybe try using a different computer.

In other words, we need to make sure that all of our equipment behaves as expected during our baseline measurements when nothing that our hypothesis predicts should affect it is going on.

Lots of statistical analyses would then be run to characterize the baseline behavior to compare with the later experiment and determine if it is statistically different.

Designing an Experiment: Running It

After we have working equipment, verified equipment, and a well documented and analyzed baseline, we then perform our actual measurements. Say, turn on our experiment during a solar eclipse. Or, if you want to follow the claim that we need to do this at some “high energy site,” then you’d need to take your equipment there and also get a baseline just to make sure that you haven’t broken your equipment in transit or messed up the setup.

Then, you gather your data. You run the experiment in the exact same way as you ran it before when doing your baseline.

Data Analysis

In our basic experiment, with our basic premise, the data analysis should be fairly easy.

Remember that the prediction is that, during the alignment event, the inertia of the tuning fork changes. Maybe it’s just me, but based on this premise, here’s what I would expect to see during the transit of Venus across the sun (if the hypothesis were true): The computer would record data identical to the baseline while Venus is away from the sun. When Venus makes contact with the sun’s disk, you would start to see a deviation that would increase until Venus’ disk is fully within the sun’s. Then, it would be at a steady, different value from the baseline for the duration of the transit. Or perhaps increase slowly until Venus is most inside the sun’s disk, then decreasing slightly until Venus’ limb makes contact with the sun’s. Then you’d get a rapid return to baseline as Venus’ disk exits the sun’s and you’d have a steady baseline thereafter.

If the change is very slight, this is where the statistics come in: You need to determine whether the variation you see is different enough from baseline to be considered a real effect. Let’s say, for example, during baseline measurements the average frequency is 360 Hz but that it deviates between 357 and 363 fairly often. So your range is 360±3 Hz (we’re simplifying things here). You do this for a very long time, getting, say, 24 hrs of data and you take a reading every 0.1 seconds, so you have 864,000 data points — a fairly large number from which to get a robust statistical average.

Now let’s say that from your location, the Venus transit lasted only 1 minute (they last many hours, but I’m using this as an example; bear with me). You have 600 data points. You get results that vary around 360 Hz, but it may trend to 365, or have a spike down to 300, and then flatten around 358. Do you have enough data points (only 600) to get a meaningful average? To get a meaningful average that you can say is statistically different enough from 360±3 Hz that this is a meaningful result?

In physics, we usually use a 5-sigma significance, meaning that, if 360±3 Hz represents our average ± 1 standard deviation (1 standard deviation means that about 68% of the datapoints will be in that range), then 5-sigma is 360±15 Hz. 5-sigma means that 99.999927% of the data will be in that range. This means that, to be a significant difference, we have to have an average during the Venus transit of, say, 400±10 Hz (where 1-sigma = 2 here, so 5-sigma = 10 Hz).

Instead, in the scenario I described two paragraphs ago, you’d probably get an average around 362 with a 5-sigma of ±50 Hz. This is NOT statistically significant. That means the null hypothesis – that there is no hyperdimensional physics -driven torsion field – must be concluded.

How could you get better statistics? You’d need different equipment. A turning fork that is more consistently 360 Hz (so better manufacturing = more expensive). A longer event. Maybe a faster reader so instead of reading the turning fork’s frequency every 0.1 seconds, you can read it every 0.01 seconds. Those are the only ways I can think of.


Despite what one may think or want, regardless of how extraordinary one’s results are, you have to repeat them. Over and over again. Preferably other, independent groups with independent equipment does the repetition. One experiment by one person does not a radical change in physics make.

What Does Richard Hoagland’s Data Look Like?

I’ve spent an excruciating >1700 words above explaining how you’d need to design and conduct an experiment with Richard’s apparatus and the basic form of his hypothesis. And why you have to do some of those more boring steps (like baseline measurements and statistical analysis).

To-date, Richard claims to have conducted about ten trials. One was at Coral Castle in Florida back I think during the 2004 Venus transit, another was outside Alburqueque in New Mexico during the 2012 Venus transit. Another in Hawai’i during a solar eclipse, another at Stonehenge during something, another in Mexico during December 21, 2012, etc., etc.

For all of these, he has neither stated that he has performed baseline measurements, nor has he presented any such baseline data. So, right off the bat, his results – whatever they are – are meaningless because we don’t know how his equipment behaves under normal circumstances … I don’t know if the light above my special table flickers at all times or just when those important people are over.

He also has not shown all his data, despite promises to do so.

Here’s one plot that he says was taken at Coral Castle during the Venus transit back in 2004, and it’s typical of the kinds of graphs he shows, though this one has a bit more wiggling going on:

My reading of this figure shows that his watch appears to have a baseline frequency of around 360 Hz, as it should. The average, however, states to be 361.611 Hz, though we don’t know how long that’s an average. The instability is 12.3 minutes per day, meaning it’s not a great watch.

On the actual graph, we see an apparent steady rate at around that 360 Hz, but we see spikes in the left half that deviate up to around ±0.3 Hz, and then we see a series of deviations during the time Venus is leaving the disk of the sun. But we see that the effect continues AFTER Venus is no longer in front of the sun. We see that it continues even more-so than during that change from Venus’ disk leaving the sun’s and more than when Venus was in front of the sun. We also see that the rough steady rate when Venus is in front of the sun is the same Hz as the apparent steady rate when Venus is off the sun’s disk.

From the scroll bar at the bottom, we can also see he’s not showing us all the data he collected, that he DID run it after Venus exited the sun’s disk, but we’re only seeing a 1.4-hr window.

Interestingly, we also have this:

Same location, same Accutron, some of the same time, same number of samples, same average rate, same last reading.

But DIFFERENT traces that are supposed to be happening at the same time! Maybe he mislabeled something. I’d prefer not to say that he faked his data. At the very least, this calls into question A LOT of his work in this.

What Conclusions Can Be Drawn from Richard’s Public Data?


As I stated above, the lack of any baseline measurements automatically mean his data is useless because we don’t know how the watch acts under “normal” circumstances.

That aside, looking at his data that he has released in picture form (as in, we don’t have something like a time-series text file we can graph and run statistics on), it does not behave as one would predict from Richard’s hypothesis.

Other plots he presents from other events show even more steady state readings and then spikes up to 465 Hz at random times during or near when his special times are supposed to be. None of those are what one would predict from his hypothesis.

What Conclusions does Richard Draw from His Data?

“stunning ‘physics anomalies'”

“staggering technological implications of these simple torsion measurements — for REAL ‘free energy’ … for REAL ‘anti-gravity’ … for REAL ‘civilian inheritance of the riches of an entire solar system …'”

“These Enterprise Accutron results, painstakingly recorded in 2004, now overwhelmingly confirm– We DO live in a Hyperdimensional Solar System … with ALL those attendant implications.”

Et cetera.

Final Thoughts

First, as with all scientific endeavors, please let me know if I’ve left anything out or if I’ve made a mistake.

With that said, I’ll repeat that this is something I’ve been wanting to write about for a long time, and I finally had the three hours to do it (with some breaks). The craziness of claiming significant results from what – by all honest appearances – looks like a broken watch is the height of gall, ignorance, or some other words that I won’t say.

With Richard, I know he knows better because it’s been pointed out many times that what he needs to do to make his experiment valid.

But this also gets to a broader issue of a so-called “amateur scientist” who may wish to conduct an experiment to try to “prove” their non-mainstream idea: They have to do this extra stuff. Doing your experiment and getting weird results does not prove anything. This is also why doing science is hard and why maybe <5% of it is the glamorous press release and cool results. So much of it is testing, data gathering, and data reduction and then repeating over and over again.

Richard (and others) seem to think they can do a quick experiment and then that magically overturns centuries of "established" science. It doesn't.

Next Page »

The Rubric Theme. Blog at WordPress.com.


Get every new post delivered to your Inbox.

Join 1,516 other followers