Exposing PseudoAstronomy

November 14, 2017

Podcast Episode 167: Modern Eclipse Lunacy, Part 2: Flat Earth


Eclipse lunacy,
This time from flat Earth folks, and
What they thought of it.

Returning to the series I started in September, we have modern eclipse lunacy, part 2, as discussed by flat Earth proponents. Part 3 should come later (well, obviously not earlier) and will be about the ideas espoused by Richard C. Hoagland as related to the solar eclipse from August.

Due to the lateness of this episode, I am really hoping that I can get another one out by Sunday. I leave for a trip Saturday night and will be gone through the following Sunday, so if I don’t at least get something written and recorded by the 18th, there won’t be an episode until after the 26th. I already have the topic, it’s going to be “Common (and False) Fine-Tuned Planet Beliefs, Discussed.” Surprisingly, this is NOT from young-Earth creationists, but rather from a UFOlogist, Whitley Strieber, that I recently heard him repeat on his internet radio program.

Flat Earth Lunar Eclipse

Flat Earth Lunar Eclipse (found on Reddit)

Advertisement

November 10, 2017

About Accepting and Rejecting Claims


I was contacted in the recent past by a listener inquiring about various claims that I’ve written (here) or spoken (podcast) about, and whether me not talking about certain things or choosing to ignore certain claims means that I agree with them. I explained my position via email, but in lieu of an on-time podcast episode (sorry … now a week late), I thought I’d explain my position here, too.

For me, to either accept a claim or to reject a claim means that you (or me, in this case, since I’m talking about me) would need to actively form an opinion about something and then state that opinion somewhere so others know about it. That latter part isn’t necessarily required, but it does constitute documentation of acceptance or rejection of said claim.

In this case, the opposite is also true: If I do not actively form an opinion about something, I have neither accepted nor rejected it. Is red wine or white wine better? For me, someone who doesn’t drink alcohol, I have no opinion in my own mind nor have I stated that opinion because I simply have not thought about it.

Could there be a knee-jerk reaction to something or could one accept or reject something by default before exploring it? Sure — Brian Dunning did an episode of Skeptoid about this maybe a year or so ago that, to exist in normal society, we can’t be a skeptic about everything. For example, I take it for granted that the electromagnetic force making me a solid object will keep me in my car, and I and my car won’t fall through the road. I take it for granted that my alarm clock will go off when I tell it to, that the operating system on my phone will just keep working, and I could go on with a myriad of other examples.

On the other side, I’ve gotten all sorts of “outside the mainstream” feedback for my Exposing PseudoAstronomy “brand.” For example, I had a woman e-mail me earlier this year claiming that chemtrails are crazy conspiracy, but that she had proof in a photograph that a certain cloud formation was actually the angelic Host of Heaven coming forth to Earth. I ignored the e-mail.

In ignoring that e-mail, does that mean that that woman should think that I accepted her position? Absolutely not – it would be pretty crazy to interpret a non-response as an acceptance of someone’s position. Should she assume that I don’t agree with her because I did not respond? She might, and my knee-jerk reaction is to disagree with that kind of message, but in fairness, I did not investigate and so I opted not to form a formal opinion on the matter. Do I consider it unlikely? Of course. But formally, I have neither accepted nor rejected her claim.

The same goes for many other kinds of messages I get from other individuals, as well: While I appreciate feedback, though am always behind in responding, if you send me a claim that you believe in, my failure to respond indicates neither acceptance nor rejection of that claim. However, if that claim is one that I have already looked into and have copious writings on in the past – for example, a young-Earth creationist claim, or Planet X, or much of Richard Hoagland’s material – then one can look to that material and likely infer my response.

But, to interpret a lack of response as me accepting your position is dishonest and could be considered libelous, depending on how far you go.

October 1, 2017

Podcast Episode 165: Little Things in Space


Microgravity,
True or near vacuum pressures,
Temperature in space.

A long-planned episode that gets back to the roots of ferreting out misconceptions (though three tied together): Little Things in Space!!! This episode, if you couldn’t get it from the haiku, covers the concept of microgravity, vacuum, and temperature (what does temperature mean if there’s nothing there to experience it?). There are no additional segments.

Thermometers

Thermometers

April 22, 2017

Podcast Episode 161: Water on Earth— Coriolis and Tides


Water on the Earth:
Do tides affect you? Does the
Coriolis, too?

Another short main segment, two common misconceptions about water: Coriolis and Tides. The episode was motivated when I recently heard George Noory make the statement, yet again, about, “Since we’re mostly water, and the moon causes tides in water, doesn’t the moon affect us, too?” Or something like that. Add to it some misconceptions I’ve had before about Coriolis, and we have an episode.

I added feedback to this episode, and there’s more feedback that’ll be in the next episode. This is also the episode for the first half of April. One of these days, I’ll get back on schedule.

Moon Over Water, Artistic Rendering

Moon Over Water, Artistic Rendering

April 3, 2017

Podcast Episode 160: Apollo Hoax: The US Flag Waving, and the Moon of No Return


Apollo Moon Hoax:
Why does the US flag wave?
And, why no return?

A return to a tried-and-true subject of skepticism: the Apollo Moon Hoax. In this shorter episode, I discuss two of the most common claims that you may hear: Why does the US flag appear to be waving in photographs, and if we went to the moon, why haven’t we been back?

There are no additional segments in this episode, and it is significantly shorter than my recent standard. This is also the episode for the second half of March.

Moon Hoax Poster

Moon Hoax Poster

March 5, 2017

Podcast Episode 158: Getting Beyond the Photograph: Image Tricks with Dr. Tod Lauer


To peer beneath the
Photograph and uncover
What may be hidden!

Sorry for the delay, but I have an interview that’s over an hour this time on image processing. In past episodes, I have talked about how you can’t get any more information out of an image than what is in a single pixel. Dr. Tod Lauer is an astronomer who has worked on all kinds of telscopes and instrument data and has developed numerous image processing techniques over his career. In this episode, we discuss some of those and how to correctly – versus incorrectly – apply them to image data to get to the best representation of the original object, or what the image was trying to capture.

There are no additional segments in this episode, but the interview runs nearly 1hr 15min. This is also the episode for the second half of February. I’m very much hoping/trying to get the first half of March’s episode out before I leave on a trip on March 19. It will either be an interview on what’s a planet, or a normal episode on Apollo Hoax miscellaneous claims I never did an episode about.

R136 Star Cluster by the Hubble Space Telescope

R136 Star Cluster by the Hubble Space Telescope

December 31, 2016

Podcast Episode 154: Impact Crater Pseudoscience Mishmash


Impact cratering
Is neat, but crazies like to
Abuse the science.

To end 2016, we have some crater-related pseudoscience. This is an episode where I talked about three different claims related to impact craters and how two of them misuse and abuse impact craters as a way to make their brand of pseudoscience make sense, in their own minds. The third claim falls under the “bad headlines” category and I get to address the Gambler’s Fallacy.

I’m still experimenting with a new microphone setup and you can hear the audio change tone noticeably part-way through. That’s when I moved my computer from off to the side so I was talking into the side of the microphone to more in front of me so I was talking into the top of the microphone. I also have a new laptop and figured out that the clicking/crackling that’s been in some recent episodes is when I stop recording, start again, and for a few seconds, every fraction of a second, the computer just records nothing for a much tinier fraction of a second. In this episode, I spent an extra half-hour editing all those out so there’s much less of it.

Artistic Rendering of Asteroid Impacting Earth

Artistic Rendering of Asteroid Impacting Earth

December 15, 2016

Podcast Episode 153: What Is Radiation?


“Radiation” is
As common in life as ’tis
In pseudoscience.

This is one of those basic science episodes where I tried to provide solid background to a typically misunderstood concept that is beloved by pseudoscientists: Radiation. I go through what radiation is and is not, different kinds of radiation, what it means to say that something is ionizing vs nonionizing, and the effects of thermal radiation. It’s a longer episode, clocking in at 51 minutes.

There are two additional short segments in this episode, the first being logical fallacies where I discussed the nautralistic fallacy, and the second being feedback where I finally addressed Graham’s feedback about the Catholic Church and a round vs flat planet.

"Caution: Radioactive" Sign

“Caution: Radioactive” Sign

August 16, 2015

#NewHorizons #PlutoFlyby – The Pseudoscience Flows #10 — Crrow777 Thinks It’s ALL Fake


Introduction

I really don’t want to give this one much time. “Crrow777” as he is known on YouTube, or just “Crrow” in interviews, is (from what I can tell) rising somewhat in the conspiracy world for reasons that I don’t understand. Among other things, he thinks the moon (Earth’s moon) is a hologram.

I have listened to some of his material, and I have heard several of the interviews he has given. I think he believes what he is saying. I don’t know beyond that what his mental state may be.

For this and other reasons, not the least of which is that the claims he makes are insane, I don’t want to feed the birds beyond what I need to to quickly debunk his foray into Pluto and New Horizons.

I have seen two additional Pluto videos on YouTube of his that go beyond the first one he posted. I’m only going to focus on that first one: “Crow Images vs NASA Images – Pluto is Only at Disneyland.” His videos typically get on the order of 10,000 views. This one has nearly 100,000 because it was picked up by various news outlets who did want to give him more attention.

The Claim

It really boils down to this: Because he can get from Earth (what he thinks) are better images of Jupiter and Jupiter’s moons than what NASA was showing of Pluto from New Horizons several days before encounter, New Horizons is fake.

The Explanation: Very Basic, Middle School Math

He’s wrong.

First off, in his first video, he is fully focused on saying that Jupiter in his camera and telescope is better than Pluto from the LORRI instrument on New Horizons. In his second video, he commits the logical fallacy of Moving the Goalpost and claims that what he really was talking about was Jupiter’s moons, not Jupiter.

Let’s do some really basic math. Jupiter was near the opposite side of the sun as Earth in mid-July, meaning it was around 900,000,000 km from us. Pluto was very roughly 5,000,000,000 km from us, or around 5.5x farther.

Jupiter’s radius is about 71,000 km (on average). Pluto’s radius is around 1190 km. So Jupiter is around 60x bigger in size.

Take 60x bigger and 5.5x farther from Earth, Pluto is going to look around 330x smaller than Jupiter.

Okay, but what about from New Horizons? The first images that he complains about and said were an “insult to your intelligence” were from late May, when New Horizons was about 50,000,000 km away from Pluto, or about 18x closer than we were to Jupiter. Except, he wasn’t showing you LORRI images. He was showing you MVIC images, which have a much worse pixel scale.

It’s the second animation he shows, about 3:45 into the video, which is from LORRI from April, when New Horizons was about 110,000,000 km, or 9x closer than we are to Jupiter.

So, simple math: Jupiter is 60x bigger, New Horizons was 9x closer, so Jupiter would STILL, if the optics were all the same, be about 6.5x bigger than what he’s doing in his back yard.

Except, the optics are not the same. I don’t know the field of view of his specific telescope. The build of the telescope changes the field of view, as does the camera size. LORRI has a field of view of 0.3° (about 60% the size of Earth’s full moon). It also has a 1024×1024 pixel detector, or 1 megapixels.

Crrow777 looks like he was using a dSLR camera, which typically has around 20 megapixels. That means that his resolving power – the ability to see a certain number of pixels across a feature – is going to be around 4-5x that of LORRI (take the square-root of the number of pixels, which is area, to get length).

So, not only is Jupiter going to still be 6.5x bigger if the telescopes are the same, but due to the number of pixels in his camera, it will be about 30x more pixels across than how New Horizons is seeing Pluto.

Other Stuff

He also complains that he has city lights and an atmosphere to deal with. But, he’s using techniques which help get around that, which those LORRI images he was showing were not using.

He also (around 4:30 in the video) just starts to rant about the images being an insult to peoples’ intelligence. I think his basic misunderstandings are an insult to peoples’ intelligence.

He also complains (5 min) that these are “high resolution” from NASA but as he defines “high resolution,” meaning you can “get down and resolve detail on these things,” then under his definition – which is different from the term as NASA was using it – they aren’t.

Except they are. We could resolve features on months out that we had never been able to resolve before. And days out, which are the ones he complains about at that time stamp, we were resolving surface features. It’s not “junk” (his term). All because he doesn’t understand something doesn’t mean the incredibly hard work and dedication by hundreds of people was all fake.

Final Thoughts

Okay, I’ve gotten myself angry at this point. I’ve said my bit, but I’ll say it again:

Just because you don’t know basic math, basic optics, and basic technology doesn’t mean that everything is a conspiracy. Instead of everyone lying, maybe it’s YOU who needs to actually do a little extra work and learn something instead of acting crazy.

Post Script

I took a look at his second video. Nothing really new in it except probably 80% of it is ranting and raving about The Masons and that nobody should trust The Government. One of the very few new things in it was ranting that there were better than 1 Mpx cameras available at the time New Horizons was built. This ignores two things: You have to go to the initial proposal – not when the craft was built and certainly not launched – and you have to look at what is tried and true technology that is capable of surviving the much harsher environment of space (temperature extremes and radiation). You can’t just go to the local camera store, buy a camera off the shelf, and fly it to Pluto. Ranting about should’ve-been-able-to-do-that shows you know absolutely nothing about how space missions work and how the technology on those missions is selected, built, and tested.

I also took a look at his third, rather short video, claiming that the colorized full-frame Pluto images was faked because if you invert the colors and increase the levels, you see a blockiness around the edge of the disk. Again: All because YOU don’t know anything about what’s going on doesn’t mean it’s a fraud.

This was a lossy JPG B&W image, with MUCH lower resolution color data overlaid on it, and then saved and exported again with lossy JPG compression. If he had BOTHERED TO READ THE CAPTION, he would know this.

July 22, 2015

#NewHorizons #PlutoFlyby – The Pseudoscience Flows #6: Data Download


Introduction

I know I’ve promised other parts to this series, but this one will be quick* and I want to get it out there because it feeds into a lot of varied and various conspiracies related to NASA’s New Horizons mission to the Pluto-Charon system, and I’ve even seen many misconceptions on normal science blogs / websites (not to be named): Where’s the data!?

Deep breath people: It’s coming. Slowly.

*I thought it would be quick, but it turned out to be nearly 2000 words. Oops…

The Slowness of Spacecraft Data Transfer

Every space mission – save for one very recent, experimental one – relays data via radio signal. In other words, light. The amount of power that the spacecraft can muster goes into figuring out the data rate it can sustain. Think of it a bit like this: If you have the Bat Signal, but you were using a flashlight, you’d be lucky if someone could just see the flashlight aimed up at the sky. There’s no way they could see details of a bat cut-out. But if you use a really really bright spotlight, you can see it farther, and you can even stick a detailed bat cutout over its front and you can make out that cutout.

Perhaps a bad analogy, but that’s kinda the idea here: If you have a very strong signal, then you can include a lot of detail really quickly. If you have a weak signal, then the data rate is slower. Oh– better analogy: bad wifi reception. You know you have low signal strength when it gets really slow.

Moving on, the New Horizons REX antenna does not have a huge amount of power. New Horizons launched with less plutonium for power than originally intended, and it needs power for running the spacecraft. It has so little power for the antenna that only the 70 meter dishes in NASA’s Deep Space Network (DSN) are big enough to receive the signal at Earth, which is a paltry 3 * 10-19 Watts. (Compare that with a 100 W light bulb.) To me, first off, it’s amazing that we can even receive that faint of a signal.

But once you get over that amazement, the DSN also has to be able to detect changes in that tiny signal. That’s how we get data. Like blinking your flashlight in Morse code, or putting the Bat Signal stencil up. If we have very little signal strength, we can’t change our signal very quickly, or the DSN may not be able to read it. Change more slowly, then they will.

For planning purposes, we were able to send data at 1296 bits per second. I’m old enough (sigh…) to remember dial-up modems in the 1990s. My family’s first modem was the dreaded 14.4 kbps modem which was painfully slow at pulling up AOL’s e-mail. Or Hamster Dance. But even that was over 10 times faster than New Horizons’ data rate. And, let’s convert it to real things, bytes. There are 8 bits to a byte. 1296 bits per second is only 162 bytes per second. I have a thumbdrive attached to my computer that holds 64 GB, or 64 gigabytes. It would take about 4572 hours, at the average New Horizons download rate, to fill that fairly modest thumb drive. That’s 190 days.

Keep in mind that the spacecraft is still taking data. Keep in mind that there are only 3 70m DSN dishes at the correct latitudes to see the spacecraft, ever, from Earth. Keep in mind that there are other missions out there that need the DSN to communicate with Earth. Keep in mind that 1296 is an average planning bit rate, and while the Canberra and Goldstone dishes get more like 2000 bps, Madrid tends to get less due to the elevation of the spacecraft above the horizon.

So, from the get-go, just from considering the data rate (power requirements on the spacecraft, distance to the spacecraft, and timetable of receiving stations on Earth), one should be able to see that it will take a painfully long time to get the data from the spacecraft.

While we could keep up with the data rate and did a large download a month before encounter (which is why data weren’t taken in late May), there’s no way we could get all the data during encounter very soon after it, which is why the craft flew with two 8 GB storage drives, and it filled up 60 Gb during encounter (see what I did there, switching between bit and byte?).

There’s Other Data Besides Images!

And that’s any kind of data. There aren’t just images and “pretty pictures” that many of us want. There is one B&W camera on the craft, but there’s also a color camera, two spectrometers, a dust counter, two plasma instruments, the antenna itself took data, and there’s basic spacecraft housekeeping and telemetry that says things like, “Yes, I really did fire my thrusters at this time when you wanted me to!”

Basic Download Plan

I can discuss this because the basics have been made public. It’s just not “sexy” like pretty pictures so it’s not that easily findable.

Leading up to encounter, data were prioritized as though we were going to lose the spacecraft at any time, so the most important, “Tier 1” science data were downloaded first. And, critical optical navigation images.

After encounter, the same thing happened, where compression algorithms were used on the data on-board the spacecraft and that lossy-compressed data were sent back to Earth to fulfill as many Tier 1 science goals as possible. That’s how – and why – in the last week we’ve already revolutionized what we know about Pluto. Those first high-res (0.4 km/px) images of the surface were planned out based on Hubble Space Telescope maps of the surface and the spacecraft timing and trajectory to get images that cover different brightness and color patches. (Which takes care of another, minor conspiracy that I’ve seen that claims we “knew” where to point the cameras because the Secret Space Program had leaked us information about what would be interesting.)

But now that we’re more than a week from closest approach, thoughts are turning to what to do next. Originally, a “browse” data set of all the lossy data (only the imagers and spectrometers store lossy-compressed in addition to lossless) were going to be returned first, along with the lossless data from other instruments. That would at least let us at least understand the surface at a lossy JPG quality and for the plasma folks to do their science.

But now people are discussing scrapping that and bringing down the lossless data instead, albeit many times slower because of the larger file sizes.

Planning, Fairness

But, believe it or not, planning of what’s downloaded when is made no more than a few weeks out (except for the closest approach weeks). Right now, we’re working on the late August / September load of commands and deciding what data to bring down in what order.

Each of the four science theme teams (geology geophysics & imaging (GGI), atmospheres, composition (COMP), and particles & plasma (P&P)) puts together a list of their top priorities based on what we’ve seen so far. The Pluto Encounter Planning (PEP) team then sits down and looks at how much they can bring down in what time and puts things in order. The sequencers then take that and try to make it happen in the test computers. Then we iterate. Then it gets reviewed. Extensively. Only then does it get uploaded to the spacecraft to execute.

But besides that priority list, it’s the Principle Investigator who decides how much data each science team gets. For example, while I’m on PEP (it’s what I was initially hired to do), I’ve been adopted by GGI. Wearing my GGI hat, I want images from the LORRI instrument. All the time, and only LORRI. I don’t care what the plasma instrument PEPSSI recorded. But by the same token, the P&P folks don’t care anything about images, they want to know what their instruments recorded as the craft passed through the Pluto system to see how the solar wind interacted with escaping particles from Pluto – or even if it did. (Which it did, as was released in a press conference last Friday.)

So Alan Stern has to make the decision of how to be “fair” to so many competing interests within the large – and broad – science team. So while COMP may want to have 5 DSN playback tracks in a row to bring back just one of their very large spectra data cubes, Alan has to make sure that GGI gets their images and P&P gets their data, too.

The Plan

The decision was made several months ago that after this initial batch of data – what we saw last week, what we see this week – that all of the “low speed” data will come down in August. That’s housekeeping & telemetry, that’s things like how many dark pixels are in any given LORRI image, it’s the two plasma instruments and data recorded by the antenna and dust counter, and that’s about it. After that, we get back to the imagers and spectrometers, per the balance discussed above.

And since it’s not sequenced, and it’s not public, I can’t tell you any more than that.

So we are, unfortunately, not going to see any new images for practically a month, beyond the two navigation images that should come down tomorrow and Friday.

Conspiracy!

Due to the nature of this blog, obviously this is going to fuel conspiracies: NASA’s hiding the data, NASA’s manipulating the data, NASA’s [whatevering] the data, etc.

It’s just not true.

I have known for years that these conspiracies about NASA somehow intercepting the data and manipulating it before even us naïve scientists can get our hands on it would be very difficult, but being on this mission has made me realize that it’s even more difficult to somehow support that conspiracy than I had thought.

Literally, as the data are received by the DSN – before it’s even completely downloaded – it’s on our processing servers and in the processing high-cadence pipeline. On Monday morning when we were supposed to get four new images, we were literally sitting in the GGI room hitting the refresh button and marveling over each new line of pixels that we were getting back in practically real-time. To use a religious analogy, it was every Christmas morning rolled into a one-hour marathon of hitting the refresh button.

And we were all there watching — over 20 of us. And other science team members kept coming in to look.

The idea of secretly having one or two people intercepting the data, “airbrushing” things in or out of it, and only then giving it from On High to the scientists just shows how out of touch from reality conspiracists are. (By the way, I use the term “airbrushing” here because that’s how many conspiracists still talk. Obviously, no one is physically airbrushing things anymore — and I doubt anyone younger than 30 even knows what a real airbrush is.)

To sustain the conspiracy, I can only see one of two choices: (1) Either all of us scientists are in on it, in which case it becomes ridiculously large and unsustainable and scientists suck at keeping secrets about exciting new things, or (2) somehow there’s super secret advanced tech that intercepts the spacecraft signal and at the speed of light “airbrushes” things out and retransmits it to the DSN to get into our processing pipeline. Because we know when stuff is supposed to appear on Earth. Because we write the sequence that does it.

Final Thoughts

Not that I expect this to convince any conspiracy theorist of their folly. The lack of image data for the next month, and the lossy JPG data we have now all contribute to the little anomalies that don’t immediately make sense, and the average conspiracist can easily spin into something that it’s not.

Next Page »

Blog at WordPress.com.