Exposing PseudoAstronomy

February 4, 2015

New Horizon’s First Images of Pluto from Its Approach Phase – What’s Going On?


Introduction

New Horizons is a spacecraft headed to Pluto. It launched nearly a decade ago, but it will arrive in July of this year and do a fly through the system. Doing lots of amazing science.

One of the instruments is LORRI, a long-focal-length camera that will be the prime imager for much of the mission because it will be able to take the highest spatial resolution images. It will also be used (was being used and is being used, too) for optical navigation — make sure we’re headed in the right direction.

Just a few minutes ago, on the anniversary of Clyde Tombaugh’s birth (the guy who discovered Pluto), NASA released the first image from LORRI of Pluto and its main satellite, Charon, taken during the Approach Phase. There’s a lot going on here – one point in particular that I just know is prone to misunderstanding later on – so I want to talk a bit about this image.

Disclaimer

I am involved with the New Horizons mission. I am not a NASA employee. This is my personal blog and everything on it is my opinion, are my words, and is done completely independently (time-wise, resource-wise, person-wise) from my work on New Horizons. In fact, it is on record that this blog is legally distinct from my professional work. Nothing I say here should be taken as an official statement by NASA or the New Horizons team.

Resolution / Pixel Scale

That out of the way, let’s get to the meat of this post. Also, I’m going to use “resolution” and “pixel scale” a bit loosely here, so pedants need to forgive me right away.

LORRI is an amazing camera. It is a 1024×1024 pixel detector, and each pixel has an effective angular size of 4.95 µrad (micro radians, or about 1.02 arcsec). 1 arcsec is about the width of a human hair from 10 meters (33ft) away. (source)

At the moment, New Horizons is around 200,000,000 km away from Pluto. That’s okay, it still has 5.5 months to get there. Pluto is approximately 1180 km in radius. That means, from some simple trigonometry (remember SOHCAHTOA?), Pluto is about 1.2 arcsec in radius, or 2.4 arcsec in diameter. Charon is very roughly half Pluto’s diameter, so it’s around 1.2 arcsec in diameter. Charon and Pluto orbit on opposite sides of their center of mass, which means they are around 8.6 Plutos away from each other, or around 9.1 arcsec separated.

Okay, lots of numbers there. Basically, that means that right now, if we had perfect optics, Pluto is about 2 pixels across, Charon 1, and they’d be around 8 pixels away from each other, max (since their orientation on the plane of the sky is not perpendicular to the spacecraft right now).

(No) Perfect Optics

No such thing exists. Given the best, most perfect optics ever, you can never get infinitely fine details. This is because light will behave as a wave, and give rise to Airy disks and patterns meaning that the light will spread out as it travels through the optics. Unless you had an infinitely wide optical system.

When you factor everything together about the optics and system and detector and other things, from a point source of light, you get a point-spread function (PSF). This is the practical, measured spreading out of the light. In astronomy, we often measure the PSF based on fitting a Gaussian distribution to a star, since a star should be a point source and just cover one, single pixel.

With a telescope aperture of 208mm for LORRI, and a passband of light centered around 0.6 µm (red light), the Airy disk should be around 1.22*0.0006/208 = 6.8 µrad. That’s around 1.4 LORRI pixels. Amazing coincidence!

Actually, not. When designing an instrument, you typically want to just about over-sample the Airy disk. You don’t want to under-sample because then you’re losing valuable resolution and information. You don’t want to over-sample because then you’re just wasting money on a detector that is too “good” for your optics, and other issues that come about when you have small pixels. So, designing a system that’s around 1-3 pixels per Airy disk is good.

When you go to a practical PSF, it’s going to be a bit bigger just because no system is perfect.

What’s the Point?

Oh yeah, back to Pluto.

First New Horizons Image of Pluto and Charon from Approach Phase

First New Horizons Image of Pluto and Charon from Approach Phase (©NASA/APL/SwRI)

Let’s put these parts together: Right now, Pluto should be around 2 pixels across, Charon 1, and a separation of around 7-8 pixels. But, add in the PSFs due to the laws of optics. That means that the light should now be spread out a bit more.

And that is why this image looks like it does. It’s also been enlarged by 4x, such that each original LORRI pixel has now been resampled. So, if you look at the image NASA released, and you blow it up a lot, Pluto looks like it’s around ten pixels across, and Charon around five.

To repeat: The released image shows Pluto to be around 10 pixels wide, and Charon around 5. Despite the theoretical values now (2 pixels and 1 pixel, respectively). That’s because (1) the PSF spreads the light out because we live in a world with real and not ideal optics, and (2) the released image was enlarged by a factor of 4.

Moving Forward

New Horizons is zipping quickly along. In May, it will surpass all previous images taken and we will truly be in new territory and a new era of discovery (so far as imaging the Pluto system — note that the other instruments have already taken a lot of data and are learning new things). That best image that exists so far of Pluto shows Pluto to be approximately 8 pixels across.

And that’s why I started this post out by stating, “one point in particular that I just know is prone to misunderstanding later on.” So, today, NASA released an image that shows Pluto with as many pixels across as what it will take in late May, when it will have that number of pixels across.

See why I wanted to bring this up now? I can just hear the pseudoscientists claiming that NASA is lying about the power of the New Horizons telescopes, they’re deliberately down-sizing images (later, based on images released now), and various other things. While they’ll still almost certainly say that, at least you know now why that’s not the case, and what’s really going on now versus then.

There are only 2 (well, about 4, since it’s 2×2) “real” pixels in the Pluto disk right now, the others are interpolated based on expanding the size to make the image look nice for this release, celebrating the image and Clyde Tombaugh’s birthday. In four months, we’ll have all these pixels, but they won’t be based on a computer algorithm, they’ll be “real” pixels across Pluto taken by LORRI. Convolved (“smeared”) with a PSF that’s about 1.5-2 pixels.

January 24, 2015

The Titles of Research Grants, Out of Any Context, Makes Taxpayers Angry


Introduction

I originally wrote this post yesterday for my other, much smaller blog, WND Watch. However, I think I did a pretty good job of explaining federal grants and problems with publicizing what the research is. So, I’m copying most of it over here.

The Post

Federal research grants are important. They provide money for a huge range of scientific research that otherwise would not be done. We, as a society, have decided that they are good, though both the left and right and everyone in between may disagree about specific programs.

Because they are public, certain laws and regulations exist whereby the public gets to know what their tax money is going to. And, there exist many websites that will let you search them. Here’s one that I have found useful because it links to the search forms for what looks like all federal research funding agencies.

What information is shown is somewhat variable, but in general, you will find: The funding agency, the PI (principle investigator), the PI’s institution, Co-Is (co-investigators), the date the funding starts, the date the funding ends, the amount of funding, and an abstract that describes the research that was provided within the proposal. You won’t find the actual proposal because it contains proprietary information — not only sometimes classified information, but also the ideas and methodology behind the proposal (so the team doesn’t get “scooped”), and even the layout and style of the proposal itself (trust me, there are many ways to write a proposal, and some of them are very effective, while others are very ineffective).

The problem with this information is that to a non-expert, and without any of the broader context of the many pages explaining what the proposal may do and the implications for it beyond the immediate research, the proposal easily looks like a waste of money to the average person. And, despite a tiny fraction of the federal budget going to research grants, various bloggers, reporters, and even congresspersons will often pull up a random title and claim that it’s an amazing example of government waste.

Such seems to have been the case with a Free Beacon article titled, “Feds Spent $432,000 Studying Gay Hookup Apps” with the subtitle, “NIH project studied ‘arousal’ of gay men when using Grindr.” The image is of two men, ostensibly gay, laying on each other and smiling.

The World Net Daily subtitle is the same, but they slightly modified the title: “Feds Spent $432,000 Studying ‘Gay’-Hookup Apps.” See, they added a hyphen and put “gay” in “quotes” because “gay” is scary and fake and a choice, because it’s WND.

There are three distinct problems here, and I don’t know if there’s a good solution to any of them: (1) There is no context, making it easy to complain; (2) titles of proposals are often whimsical; and (3) people don’t realize that less than half of the money goes to the actual researcher(s).

The first issue is that when we write grant proposals, we write them at a level where someone in our field or closely related field can understand them. When I write a crater-related proposal, I try to generalize the abstract to explain to a general person familiar with planetary geology what I plan to do and why. I then spend several pages within the proposal giving background information so that someone who models the interiors of planets would be able to understand why I want to do an observational study of impact craters.

I don’t write my abstract so that someone who has a 9-5 job working for a law firm, or working retail, or who works in Congress, would understand it. That would simply require “dumbing it down” too much. I don’t mean to imply that those people are dumb; rather, we have a very limited amount of space to explain why we want to do the research, how we’re going to do it, the broader implications, the proposal team, the management structure, and justify the budget. If we also had to write it at a level that anyone could understand it, we’d never be able to get into details.

Therefore, what makes it into the abstract that would be made public should I win the grant will rarely make sense to a general person just picking it up randomly.

Similarly, we often write titles to try to stand out to the review panels. Something fun and whimsical, for example, to make someone smile. For example, one might entitle a proposal, “Studying Martian ‘Holes in One.'”

A congressional staffer or random blogger may pick that up thinking, “Wow, why is NASA funding something about golf on Mars?” In reality, my proposal is about studying meter- and decameter scale craters in a broad statistical study to try to understand where they are most common, how dense they are, and therefore what the likelihood is that a a future spacecraft may inadvertently land in one. This happened with the MER Opportunity when it landed on Mars eleven years ago. It turned out to be good because the crater’s walls let Opportunity see a lot of otherwise buried layers, and it was able to get out of the crater. But if the crater were a little steeper, or a little smaller, then the rover would not have been able to escape or it may have fallen over and not have been able to righten itself.

Now it seems much more important: You send a half-$billion craft to Mars, you’re going to be more willing to fund a $300k study into impact crater hazards for landing, right? But, a layperson may never get past the title and flag it for government waste.

And that leads into the third issue: We don’t get that money. On a proposal I wrote several years ago, just as an example, the total budget for the three-year proposal was $328k. Salary was $127k, a little over one-third of the total amount. That was my salary as a graduate student half-time for 1 year, and postdoc half-time for 2 years, and my then-advsior for 1 month each year. What did the other money go to? The vast majority was institutional overhead, which covers administration staff salary, budget office salary, building rent, lights, computer support, custodial staff, etc. Then there were benefits, like health insurance, life insurance, and retirement. There was also money in there for a new computer and software licenses so I could do the work. About $10k was travel to conferences and another $6k was publication costs: After all, I could do the most ground-breaking study ever, but if I never told anyone about it, then what’s the point?

So, while a study may look like it costs a lot, and overhead rates vary considerably across different institutions (and are generally higher at private companies versus public universities), a very very general rule-of-thumb is to divide the total amount by 3, and that’s salary.

That brings us back to the article in question. Now that you have all that in mind, let’s look at it. Using the NIH (National Institutes of Health) search form, here’s the grant, awarded to Dr. Karolynn Siegel, entitled, “Use of Smartphones Applications for Partnering Among MSM.” MSM is “men who have sex with men” (since many men are unwilling to identify as bi or gay but do have sex with other men).

While Free Beacon doesn’t seem to have much of a spin, and it does not allow comments so I can’t quite tell which end of the political spectrum it’s on, WND clearly does have an agenda: This study is a waste because who cares about gays (or “gays”) hooking up? What benefit could there possibly be!?

Well, take a moment and think more broadly about it from both a social and medical standpoint: Smartphones and GPS-enabled devices have drastically changed how we interact, so from a social standpoint we need research to better understand that phenomenon. From a health standpoint, it’s dramatically increased the ease of casual sex, especially among gay men where there is still a stigma of trolling the bars or streets for a partner. Heterosexuals have their own app (Tinder), and so the findings from a study of gay males hooking up could have implications for straight men and women, too. And, casual sex will increase the risk of STDs (sexually transmitted diseases). So, from a public health standpoint, understanding a strong new vector for how diseases spread is the first step to trying to determine ways to minimize that risk. Both for straight and gay persons.

If the blogger or WND had bothered to read the abstract on the NIH site, they would have found that (emphasis mine):

The study aims are: 1. Examine how and why smartphone applications are used for sexual partnering, the situations and locations in which they are used, in order to gain insights into how these use patterns might contribute to sexual risk behaviors. 2. Investigate the process by which MSM use smartphone applications to find sexual partners (i.e., who they look for, how they present themselves, how they communicate, extent of safer sex negotiation,and disclosure) to gain insights into how this process may contribute to sexual risk behaviors. 3. Investigate the sexual and emotional states (e.g., more/less urgency, arousal, impulsivity) that MSM experience when seeking or meeting sexual partners using smartphone applications and gain insights into how these states may contribute to sexual risk behaviors. 4. Examine the perceived need and acceptability of a smartphone delivered intervention and assess what MSM perceive as needed components for a smartphone-based sexual risk reduction intervention.

It also contains a public health relevance statement (likely unique to the NIH, since I don’t have to do that for NASA).

Meanwhile, the cost – $432k – may seem high. But, divide by three, and we’re down to around $150k salary. For a medical researcher, working for two years, at maybe half or a third of their time on this particular grant, that doesn’t seem very high anymore. Especially if most of it is given to graduate students who will be conducting the actual interviews with the 60 MSM in the study and Dr. Siegel is there for a month a year to supervise and then more at the end to crunch the data. In medical studies, there’s also money that is sometimes paid out to participants as compensation (I have no idea if that’s the case in this study, but I know it happens in others).

And so, we went from a sensationalist headline that clearly is meant to drum up a specific reaction (government waste! who cares about gays!?) but that’s because it leaves out any form of context as to the broader implications of this kind of study and why it’s being done. It also completely ignores that the amount of money in the federal budget for government-funded scientific research is somewhere around 3.4%. (FY2015 budget is around $3.97T, but science is $135B, and just under half of that is defense, leaving 1.8% for non-defense.)

The Obligatory WND Annoyance

And, World Net Daily got that reaction. In the 22 hours the article on their site has been posted, they have gotten 42 comments. They broadly fit into saying that President Obama is gay (which is another odd conspiracy they’ve been floating for years, and remember that being gay on WND is bad), that this is government waste of tax money, and that the study is stupid because it’s about The Gays.

Ignoring the first, some examples of the second are:

    • dan690: “The government says there is no room in the budget for cuts. Here is an excellent example of where to cut and there are thousands more.”
    • Tomas Cruz: “And they wonder why we reject every call for more taxes for this or that because it ends up with this nonsense.”
    • James Frost: “What the hell is going on with our officials? They spend our money on conducting such stupid research. But what`s the use? They`d better spend money on veterans, poor families, security measures. This gays have too much public attention!”

And examples of the third are:

    • Sharknado: “A government of perverts…just great…thanks a lot.”
    • ThoLawn: “What was the purpose to spend (waste indeed) half of million dollars to interview all that gays? What they’re going to do with that “research” results? Would it help to solve any problems? What a stupidity…”
    • HardCorePress: “Talk about in your face government sponsored hommoman wanna pump a guys *** pervertedness. This type of blatant sin has been seen by God and God will send his wrath upon this country. May it be nuclear fire to cleanse the cancerous mass of homosexuality (the pinnacle of debauchery and Obamanibale hedonism).”

December 16, 2014

Podcast Episode 122: Comet 67P/Churyumov-Gerasimenko and Rosetta Conspiracies


Conspiracies of
Comet 67P …
Few, but they are weird.

A timely and listener-requested episode! What’s not to love!? In the episode I talk about several of the conspiracies I’ve seen surrounding the Rosetta mission and Comet 67P. From artificiality (Hoagland makes a guest appearance) to singing so as to raise our consciousness to angelic levels when 2012 failed, I spend nearly a half hour going through 2 to 4 claims (depending on how you count them) that have been making the rounds. I also get to touch on image analysis.

There is also one New News segment this episode, and it refers to the death of the Venus Express mission around (oddly enough) Venus. The news relates to the episodes on uncertainty. Not sure what the connection is? Listen to the episode! The episode also comes in at just over 30 minutes, my target length.

December 5, 2014

How to Not Understand Science and Use that to Say Science Is Wrong


Introduction

Given the large amount of work I spent on my two-part 1.75-hr podcast episodes on James McCanney’s “science,” I thought it appropriate to get a Swift blog post out of the effort. This post was geared more towards a general audience and so I used one of McCanney’s quotes to discuss a common problem that we face as scientists, we face as science communicators, and we face as skeptics (where “we” is a different group in those three instances, and I consider myself a member of each).

This is reproduced from what I originally sent the editor on the JREF Swift blog.

Swift Blog Post #3

As a scientist and attempted science communicator (and skeptic in my copious free time), one of the difficulties I face is that science is not other-people-friendly. In fact, most of us work on tasks so specific that we often face difficulties explaining what we do to colleagues, much less people who are not scientists, so it’s rarely even other-scientists-slightly-outside-our-field-friendly.

Since I also play a skeptic on the internet, I have the added issue that terms, phrases, and analogies I may try to use to explain a concept could very easily be misconstrued by a pseudoscientist to support their pet idea. For example, if I talk about an “image anomaly,” to other scientists, this means something like a spot of dust on the lens (usually appears as a darker doughnut shape on the image) or a cosmic ray that makes a bright spot or streak. To a pseudoscientist, it could mean an apartment complex on Mars or an alien space ship near the sun.

This especially becomes an issue when people use those misconceptions to turn around and say that some well established model in science is wrong, and spread those views.

For example, I recently completed a two-part podcast series (episode part 1, part 2) on the ideas and misconceptions of “Professor” James McCanney (I place “Professor” in quotes because he is introduced as such, but he has not taught for over 30 years after he was fired from two teaching jobs, and he does not have a doctorate). Mr. McCanney has many misconceptions about the universe, but one that struck me was this, stated on the Coast to Coast AM radio program on 30 August, 2007:

“When astronomers take their picture of the universe, and they start looking back, and they say, uh– ‘We’re looking back in time,’ and now scientists say they’ve seen objects that are only 500 million years after the Big Bang. But the only problem is they’re in all directions, when we look out in all directions. So if you actually were seeing objects that were only 500 million years after the Big Bang, they would have to be consolidating in some location in the sky near where the original Big Bang had to be. But that’s not the case, they’re all over the sky.”

This was one of his primary stated reasons for saying the Big Bang was wrong, doesn’t make sense, and observations do not support it.

The problem is that this is a gross misunderstanding of the science, and because of that misunderstanding, he concludes that the science is wrong. This example is, in part, a manifestation of an issue we scientists face: Trying to explain a geometrically and spatially complicated idea that goes against your every-day experience.

The analogy in common culture for the Big Bang is that it’s an explosion. In our every-day experience, explosions happen at a specific place. Therefore, if the Big Bang was an explosion, shouldn’t it have happened in a certain place? Ergo, shouldn’t what Mr. McCanney said – that we should see stuff only get younger towards the original spot of that explosion – be correct? And if the evidence doesn’t show that, doesn’t it mean the Big Bang is wrong?

Herein lies the problem with your every-day experience: The Big Bang model holds that the universe did not “start somewhere,” but rather it “started the somewhere.” You cannot have the event that created the universe – all of space and time as we know it – happen within the universe itself. It’s like saying that you, yourself, started in your big toe, or your ear, and grew out from that. But you didn’t: Your entire physical self started with your entire physical self (a single cell) – you cannot point to a specific part of yourself where you started.

The same is the case with the universe. The reason why there is no center of the universe, or no specific spot where we can look towards where the Big Bang occurred, is that it was an explosion of space, not in space.

Another common analogy that’s used is to think of a balloon. The surface of that balloon is a 2D representation of the 3D universe. That 2D representation is warped in 3D, just as our 3D universe is likely warped in 4D or higher spatial dimensions. If you think of a squished, completely deflated balloon, you could say that it’s just a tiny speck and that surface (our universe) doesn’t yet exist. Now, blow air into the balloon, and the surface exists and expands. If you were on that surface and you looked in any direction, you would see the surface. If light travelled really slowly, then you would see that surface as it appeared further back in time.

And that’s what we see when we look out into the universe: As we look farther and farther away, we look further and further back in time, and we see a much younger universe. In all directions. Including the cosmic microwave background radiation, which if what the universe “looked like” just about 380,000 years after the Big Bang.

This observation is what one should and would predict if the Big Bang is the correct model for the initial stages of the universe’s existence.

To bring this full-circle, this kind of observation – the very one Mr. McCanney says contradicts the Big Bang and that’s one reason why he doesn’t believe it – is actually an observation that supports the Big Bang.

But, trying to grasp why this is what you should predict from the Big Bang model is not easy. It goes against what you normally think of when you think “explosion.” Or of really anything happening in the universe, which, by definition, is everything we’ve ever observed or experienced. It is a common misunderstanding, but it’s one that comes from an attempt to simplify the science in a way to easily explain it to non-scientists.

That’s why, as skeptics, we always need to be aware of simplifications and analogies used by science communicators: While it may be done with the best of intentions to try to convey a complex concept, it can introduce further misunderstandings. And, given the right person (or wrong person, depending on your point of view), that misunderstanding can be used to promote pseudoscience.

November 28, 2014

The Decline of Time Magazine: From A to Z (Astrology to Zen)


Introduction

When I took AP English History in 1999-2000, we were required to have a subscription to either Newsweek or Time Magazine.

When I worked in the public library during most of high school, I admired the large, full-page covers of Time and I considered it to be one of the premier news magazines of the, well, time. There are even books of its covers and what they represent of America’s and the world’s history.

After I graduated high school and began to read news on a regular basis, Time and CNN were my primary news sources.

But, the Age of the Internet and shifts in emphasis have, in my opinion, led to a significant decline in Time. From its shift of investigative journalism to columnist opinions, and from lengthy reports to quick, ~5-paragraph summaries, it’s a change, and not for the better.

But worst of all, this kind of change allows for more credulous and – dare I say – pseudoscience reporting to masquerade as “news” under the still generally well-respective umbrella that is Time. Phil Plait beat me back in early October when he posted about Laura Stampler writing columns on astrology, but the latest is Charlotte Alter writing a completely credulous column that parrots Deepak Chopra.

Laura Stampler Parrots AstrologyZone’s Susan Miller

Two days in a row, on October 7 and 8, 2014, Time‘s Laura Stampler wrote two “interviews” she did with AstrologyZone’s Susan Miller. I place the word “interview” in quotes because it was the level of hard journalism that one might expect from talking to the television: Miller said what she wanted to say about astrology, and Stampler wrote it down.

For example, here are paragraphs 2 through 7 of the first piece on Astrologer Susan Miller On Why You Should Pay Attention to the Lunar Eclipse”:

“It’s called a blood moon, but I don’t want people to be agitated by that,” popular astrologer Susan Miller tells TIME. And while the April 15 lunar eclipse signaled a time of conflict and even tragedy — Miller notes that was the day day Boko Haram kidnapped 276 schoolgirls in Nigeria and the day before a South Korean ferry capsized leaving 300 dead and missing — “this one is much more gentle.”

In fact, Miller says the change that the Oct. 8 lunar eclipse brings, although shocking at first, will even be good, at least according to the stars. To understand why, we asked her all the questions you’d want to ask a famous astrologer.

“This eclipse is a full moon so something is coming from to an ending or culmination,” she explains.

“Eclipses are non-negotiable,” Miller says. “They end something and they brings something else. But it really needed to end… There’s a shock factor first, and then a solution that turns out to be so good that you realize, wait a minute, this is a blessing.

Miller recalls when she had a houseguest who “spent the whole year crying on my couch,” coincidentally over the course of a series of five eclipses. On the first eclipse, her husband asked for a divorce. On the second, he told her that he wanted to sell the house. Come the third the house was sold, fourth the property was split, and on the final eclipse the divorce was finalized.

The second piece, the next day, wasn’t much better. Well, really was somewhat worse. The title was, “Why the Most Famous Astrologer in the Universe Says You Shouldn’t Buy an iPhone Right Now.” Here are just two paragraphs as a sampler:

“I’m such an Apple addict, I love everything they come out with, but it’s not the right time,” Miller, founder of Astrology Zone, tells TIME. “I know that everybody wants to buy the iPhone 6, but you’ve got to wait.”

Why? Mercury is in retrograde between October 4 and 25 — and that period of cosmic slowing, when the planet appears to be traveling backwards, is notorious for misunderstandings and technological failings. “It’s not a good time to buy an electronic item,” Miller says. “Sometimes you can make the wrong decision or you buy something and you never use it and you say to yourself, ‘Gosh, that was a bad purchase.’ You bought the wrong model or then it goes on sale the following week, or something happens… [iPhones are] going to continue to have little software bugs.”

Readers of my blog should know by this point that astrology carries zero weight with me or with any other scientist. It is magical thinking, confirmation bias, and vaguely worded nonsense that can apply to most people who hear it. It also uses science-babble (akin to techno-babble on something like Star Trek where they use sciencey-sounding terms and phrases in various combinations and contexts that render them meaningless).

Having a major news source have any author posting about it in this kind of credulous “reporting” is worrying, among other adverbs.

Charlotte Alter Parrots Deepak Chopra

I haven’t really talked about Deepak Chopra on this blog before. That’s mostly because Chopra is primarily in the New Age “field” and tries to talk about medicine. And the nebulous concept of “consciousness.” His only real foray into astronomy or physics is to be a worse abuser of terms and concepts than astrologers, especially of anything “quantum.” I honestly simply haven’t considered him worth addressing on this blog.

However, in the context of bad media reporting, after Laura’s horrible pieces on astrology, I was watching for other examples, and this morning at the airport while looking through my RSS feed, I saw this headline: “Deepak Chopra on Why Gratitude Is Good for You.”

Sigh. (Yes, I literally sighed when I saw the headline.)

The “article” is by Charlotte Alter. It consists of six paragraphs. One of them is a sentence fragment introduction. The fifth is a paragraph that appears to be from one of Chopra’s books. In other words, this one isn’t even an “interview” with him, rather this is Charlotte reporting on what Chopra has written in the past about gratitude and why it’s “good for you.”

In her third paragraph, she wrote: “Chopra, who most recently wrote The Future of God: A Practical Approach to Spirituality for Our Times, says expressing gratitude on Thanksgiving isn’t just tradition — it’s also good for the body and spirit. And in a month when many Americans may be feeling worried or disappointed (about everything from the severe weather, to the unrest in Ferguson and the disturbing allegations against Bill Cosby), an effort to be more grateful can help get rid of those “toxic” feelings, if just for one night. “Anger and hostility can be inflammatory not only in your mind but in your body,” he said. “Gratitude is healing. It expands your awareness and shifts your focus from something that’s actually hurting you to something that is healing.””

This is why there are websites that randomly generate “Chopraisms,” combining random words into phrases that sound a lot like what Chopra sells.

Alter concludes with these three paragraphs:

But it’s not enough to just gorge yourself on sweet potatoes and bicker over the drumstick– you have to actually deliberately practice gratitude in order to reap the spiritual benefits.

“You can do a simple meditation where you quiet your mind, put your attention in your hear and just ask yourself ‘what am i grateful for?’ If you just ask the question in your own stillness, things will come up…You don’t have to go looking for the answer, you just have to ask the question and then allow any sensation, image, feeling or thought to come to you…People who practice this kind of ritual, they have a boost in their immune functioning, a shift in their hormones, it’s pretty interesting what happens even at the level of cell markers of information…This kind of thing actually has very powerful biological consequences.”

So stop stressing about how much pie you’re eating and focus instead on what’s good in your life. It’s healthy.

I’m not sure if the poor grammar is in the original Chopra writing or if Charlotte did some bad copying. I’m also not sure how you would “put your attention in your hear.” But I guess I’m just a mean skeptical scientist.

Decline of the News Industry

I don’t know if Ms. Alter is a good reporter or a stay-at-home occasional freelance writer who submits random blog posts to news sources in the hope of making a few bucks if they’re published. The same goes for Ms. Stampler.

But, once you have a reputation as a good company in whatever your field may be, allowing stupidity to be done in your name is a sure way to ruin your reputation.

It’s also a way for pseudoscientists to claim an undeserved reputation. Being published in these kinds of outlets lends undeserved credibility that can then be cited as evidence of veracity as a form of argument from authority: “Hey! I got published in X (which has a great reputation), therefore I should be taken more seriously now!”

I’m probably preaching to the choir here, though. Most of us know traditional media is dying, and they need to look for other ways of making revenue.

However, I’m reminded of the Murphy Brown episode where the news crew of FYI decided to have “ladies of the night” on along with some concerned mothers’ group and it erupted into a cat fight. The crew felt like dirt after doing it, but then they saw that their ratings were the highest they had ever been. They excitedly talked about other, similar ideas and more controversy and spectacle … and then they had another moment of, “What the heck are we doing here? We used to be serious news people and now look at us.” The episode ended with them pondering the trade-off between serious journalism and sensationalism and easy ratings.

I worry that Time is not that introspective.

Now, if only those damn kids would get off my lawn…

November 14, 2014

The Good and Bad of NASA Publishing Spacecraft Images Online


This was my second blog post for Swift, published late last week:

You wouldn’t know it by listening to many conspiracy theorists, but NASA is by far the most open space agency in the world when it comes to publishing data from spacecraft. By law, the teams that built and run the instruments on these missions must publish their data within six months of it being taken, except in rare cases when an additional six-month extension can be granted.

Contrast that with the Chinese and Indian space agencies, which still haven’t openly published data from missions that completed several years ago. Japan is better, as is the European Space Agency (ESA), but neither of them supply data as readily and easily as NASA.

In addition to the rules for depositing the raw, unprocessed data, NASA’s PR department, along with the PR arms of most missions, publish some of the data online almost as soon as it’s taken. This is great for the public; it’s also terrible for skeptics.

Allow me to explain by way of example: The LCROSS mission. This was the Lunar Crater Observation and Sensing Satellite that infamously sparked conspiracies that NASA was “bombing” the moon. The mission was to launch a projectile at the lunar south pole where there are permanently shadowed regions, and have the spacecraft fly through the plume formed by the projectile’s impact to try to detect water. If water were found, it would be a boon for crewed missions to the moon because astronauts could mine the water there instead of bringing their own.

The big event took place the night (in the US) of October 9, 2009. Within just a few days, photographs taken by the spacecraft were published by NASA online.

This was really good for the public. We got to see early results of what had been a very hyped event with observing parties taking place across the nation, including at the White House. It helped keep public interest longer than just one evening. It shared data with the people who paid for it: taxpayers.

LCROSS Landing Site

LCROSS Landing Site

So what’s the problem? These images show several things: The most basic of photographic processing without things like dust on the camera removed (which is always done for science images), color (the camera was black-and-white, so the color is completely an artifact of the press release image), brightness enhanced a lot such that most of the surface is white, and the PR release image is a JPG file format, meaning that there are JPG compression artifacts that manifest as blocky blobs.

For most of us, that doesn’t matter. We get the point that this is showing a bright glow caused by the impact of the spacecraft’s projectile. In NASA’s before shots, that bright glow is not present. A tiny flash of light that the world was watching for, with tens of thousands of people across the night side of the Earth staring upwards. (Unfortunately, it was cloudy where I was.)

Pseudscientists, on the other hand, don’t get that. There exists a large group of space anomalists that look for anything in a space photograph that they don’t immediately understand and use that to claim fill-in-the-blank. One of the most prolifically published modern people who practice this is Richard C. Hoagland. He took the NASA press release, increased the brightness even more, and claimed that the rectilinear, colored structures, were in reality infrastructure (tubes and pipes) by the “secret space program” and that the public space program had bombed them because the folks at NASA had finally found out about the secret bases on the Moon.

NASA Image PIA10214 with a Close-Up of "BigFoot"

NASA Image PIA10214 with a Close-Up of “BigFoot”

This will seem absurd to most people. But not to some. And, this is just one example; innumerable others exist. Every image published online in the easy-to-access public websites of the Mars rovers are poured over by anomaly hunters in the same way. Among other things, they search for rocks that are then said to look like apartment complexes, fossils, Bigfoot, all kinds of terrestrial and aqueous animal life, boots, a pump, and very recently, a water shut-off valve (to just name a few). Most of these are basic examples of pareidolia (creating a pattern in otherwise random data), or imprints actually caused by the rover equipment, but these are usually facilitated by the low-resolution and highly compressed JPG image format.

Do I think that NASA should stop being so open? No. I think that people are always going to find ways to find anomalies in images and claim it means something special. It’s the nature of the phenomenon, and pseudoscientists are always going to find something anomalous with something. And, the moment that NASA starts to restrict access to data, claims of censorship and hiding things will become even louder than they currently are.

I’m part of the planning team for the New Horizons mission that will reach Pluto in July of 2015. When the PI (Principle Investigator) of the mission, Alan Stern, announced that some of the data would be released on the web as low-resolution JPG images as soon as we get them, I have to admit I cringed just a little bit. And I felt bad for doing it. Dr. Stern has the absolute best of intentions, and he wants to keep people interested in the mission and share the data and let people see results from what is probably a once-in-a-lifetime mission, especially since the data downlink to Earth is going to be done over several weeks (due to the craft’s vast distance from Earth).

But, he will be making it very easy for anomaly hunters to find anomalies made by an intelligence — just not understanding that that intelligence was the software that produced the image.

Going forward, I don’t think there’s any good solution. But, this is something the skeptical community should be aware of, and it shows that there’s always a downside to things, even when you think there isn’t.

November 7, 2014

The Myth that Skepticism is Easy


Introduction

There’s a lot of finger-wagging on both sides of the skeptics vs believers “debate.” To the point where people who believe in things like bigfoot and ghosts are already going to say from my terminology in the first sentence that I’m biasing this entire blog post. Well, get your own blog. Or be polite about it in the comments.

Anywho, there is the frequent claim that I hear on various shows and read in various places that “being a skeptic is the easiest thing in the world: All you have to do is say ‘no.’” Perhaps obviously, I disagree, and this post is about why.

Terminology

First, I must define my terms. I do not consider someone who just comes out and blurts “that’s not true” or “that’s not real” without evidence to be a skeptic. There is a difference between a skeptic and a denier. I consider:

Skeptic: Someone who approaches a question from a position of looking for evidence and making a conclusion based on the preponderance of the evidence, which can and should include all past evidence for plausibility of various explanations of that question.

Denier: Just says “no.”

Notice that there is a difference here. A skeptic can be someone who just says “no,” but it must be able to be backed up based on an examination of the evidence. For example, these days, I just say “no” automatically to most claims that the latest rock seen on Mars is a skull or a face or a fossil or a water valve. (The water valve ended up being the impression of a Phillips head screwdriver, but it’s much easier just to not do any research into the instrument and claim it’s a miniaturized water valve, because, ya know, it looks like one!) I can say that while still fitting my definition of “skeptic” because I actually have investigated this class of claims ad nauseam on this blog and on my podcast, and at a glance I can usually tell what class of misconception it fits into (usually either poor image analysis and/or pareidolia).

It’s Not Easy Being a Skeptic

It’s not.

No, really, it’s not.

Seriously.

For a completely selfish and capitalist reason, it’s not financially rewarding, which is very different from pseudoscience. I listen to people on Coast to Coast AM who publish a book every year – and those are the slow ones – about talking to dolphins, or searching for Atlantis, or making things up about archaeology or astronomy. It would be so easy, so cheap, and so much less time for me to write a book where I just make things up than to write a book that’s about real stuff that requires real research.

Now, I realize that I’ve painted with a very broad brushstroke here. I’m not saying that all people who many of us would classify as “pseudoscientists” publish quick and easy books where they just make things up and don’t do research. Some put a lot of time and energy into their books, and that is a separate category. But, next time you’re at a bookstore (they still have those, right?), take a look at the New Age or Spiritual sections. Count the number of books, amount of shelf space. Then go to the Skeptical section. Can’t find it? There’s a reason for that. You may be lucky to find Carl Sagan or Michael Shermer in the Science section. Or perhaps just in the broad Non-Fiction.

With that aside, being a skeptic – a real skeptic (with full knowledge of the No True Scotsman fallacy … see Terminology above) – takes a lot of work. It is trivially easy for someone to look at a rock in the latest image from Mars and claim that it’s a mechanical pump. Or a fossil of a sea star. And it will get posted on UFO Sightings Daily, and maybe even get picked up by a small online newspaper, and then maybe even by the Huffington Post. Yes, this has happened before.

Meanwhile, to do a proper skeptical investigation, we have to bring in information about how cameras work, how images from spacecraft are sent to Earth and processed, how color compositing works, how image resizing works, and what pareidolia is. It has taken me longer just to write that sentence listing the things you have to do than it would for me to look at a photo taken by an Apollo astronaut, see blooper, and send an e-mail to a UFO outlet online.

And then there’s actually doing the work. Fortunately, I’ve covered a lot of that material in podcasts #47, #48, #73, and #74. FYI, that’s nearly 3 hours of listening pleasure. All to investigate one single claim.

So, Is Skepticism Easy?

No.

Wrap Up

See what I did there? With the “No”? Anyway …

For those reasons, it really does bug me when I hear people say, or read when people write, that being a skeptic is easy. So much easier than being what they term a “true investigator.”

No, in fairness, just as there are some paranormalists who do write lengthy tomes that are full of real investigation (at which point I would mainly just argue with the conclusions), I do know that there are investigators who do do a lot of real investigation. Graham Hancock springs to mind. I fully disagree with practically everything the man has said. But, he has done a lot of real work, and I have to acknowledge and give him credit for that.

But, people like him, on the paranormal side, are very few and very far between. Most that you hear from are fully on the quick-’n’-dirty claim side, where it really is much, much easier to not be a skeptic.

September 21, 2014

Philosophy: On Skepticism and Challengers


Introduction

I’m taking a break because I don’t want to work on this proposal at the moment. I’m great at procrastination, when I get around to it.

Anyway, I want to muse philosophical-like for a few minutes, reacting to some recent things I’ve heard regarding skepticism and people challenging your views.

“Healthy” Skepticism

George Noory, the now >1 decade primary host of late-night paranormal radio program Coast to Coast AM, had Dr. Judy Wood on his program for the first two hours of his “tribute” to the September 11, 2001 (I refuse to call it “9/11″ because I think that trivializes it — we all have our quirks) terrorist attacks. Judy Wood is author of the book, “Where Did the Towers Go?” Her thesis is that a directed “zero-point energy” weapon “dustified” the towers, or that they suffered “dustification.”

It was a very difficult interview for George, I’m sure, since Judy refused to speculate on anything. I’m also growing slightly more convinced that he may have questions written down on cue cards because he asked the exact same question a few minutes apart (“how much energy is required to ‘dustify’ the towers?”) and she refused to speculate both times. Just repeating what she “knows she knows that she knows.” She is also incredibly defensive and clearly doesn’t know what the word “theory” is.

All that aside, early in the interview, George did a tiny disclaimer saying that they always get people writing or calling in saying that doing shows like that is unpatriotic and/or disrespectful to everyone who died in the attacks and the aftermath. But, that it’s healthy to have skepticism and to always question the official story.

*cough*

Okay, George, you are correct in theory (yes, I used that word purposely), but completely wrong in practice. Skepticism does not mean doubting or denying or not accepting everything. Skepticism, as we use the term today, means to not accept something unless we have good evidence to do so. It’s a method of investigation, to look into claims, examine the evidence, and put it in context with all the other evidence and plausibility given what has been established about the way the world works.

At least, that’s how I tend to define it, and it’s how I tend to practice it.

Do I believe “the government” on everything? No. For example, President Obama recently announced that the US is going to take on ISIS in some form or fashion, but that there would be “no boots on the ground.” Given past experience when politicians have said that, and given the realities of ISIS and the Middle East area in general, I’m … shall we say … “skeptical,” and I will reserve acceptance of his statement until it actually plays out.

Do I believe that NASA “tampers” with photographs of the moon to “airbrush out” ancient ruins and alien artifacts, or do I accept what “they” give us? (I put “they” in quotes because “NASA” is an organizational administration within the federal government; it’s the people involved who do everything, and it’s contractors and grant awardees who deal with data and other things.) I accept what they give us. I tend to not question it.

Why? Because of past experience and my own experience in investigating the claims to the contrary. I look at other images of the area from multiple spacecraft. From spacecraft from other countries. They are consistent. They don’t show different kinds of anomalies you’d need in order to have the scenario that the conspiracists claim is happening. They do show what you’d expect if the data were faithfully represented, as it was taken, after standard spacecraft and basic data reduction steps (like correcting for geometric distortion based on how the spacecraft was pointed, or removing artifacts from dust on the lens).

George, there is a difference between healthy skepticism – looking into claims – and beating a dead horse. Or beating over 3000 dead victims to a terrorist attack.

There is no plausibility to Dr. Wood’s arguments. Her claims made to back them up are factually wrong. (Expat has addressed some of them in his blog, here, here, here, and here.) She is ridiculously defensive, refuses to delve further into her model to actually back it up, and has a name for herself only because people like you give her airtime to promote her ideas. True skepticism is to examine the arguments from both sides and draw a conclusion based on what’s real and what’s most probable. Which has been done by thousands of people who debunk every single claim the conspiracists make about the September 11, 2001, terrorist attacks. But you won’t go to them. You bring on Dr. Wood, or people from the Architects and Engineers for Truth.

A one-sided investigation is not faithful, not genuine, and is disrespectful to everyone.

Challenging Your Conclusions

In a related vein, but completely different context, I was reading through my RSS news feeds and came upon the headline to the effect (because it’s disappeared from my feed since I started to write this): Michelle Obama explains to school children that challenges [probably, though I read it as “challengers”] are a good thing.

So true. Most people in the skeptical movement know that this is “a True.” Most scientists know this is “a True.” Most pseudoscientists are vehemently against being challenged.

I’ll take the subject of my last blog post to illustrate this example, not that I want to pick on him per se, but he’s the last person I listened to in detail that I can use to illustrate this point, other than Dr. Wood, who I discussed much more than I want to in the above section. Mike Bara.

Mike was somewhat recently on another late-night (though not quite as late) internet radio program, “Fade to Black,” where Jimmy Church is the host. It’s on Art Bell’s “Dark Matter Radio Network,” where I was also a guest several months ago. I have since called in twice to the program, both times to discuss the possibility of debating Mike Bara on some of his claims.

The very brief backstory on that is Mike was on Coast to Coast, and basically attacked me. I called in, George said he’d arrange a debate, then stopped responding to my e-mails. A year later, the same thing happened, and George actually e-mailed me (I couldn’t call in because I lost power that night — happens sometimes in the mountains of Colorado, though we now have a generator), he wanted to arrange a debate, he claimed on air that I had stopped responding to his e-mails … and then he stopped responding to mine so the debate never happened. Later, I learned that it was Mike who may have dropped his acceptance. I related that to Jimmy.

Jimmy asked Mike if he’d be willing to debate me, and Mike’s response was effectively, “what do I get out of it?” Mike opined that what I (Stuart) would get out of it is a platform and attention which, according to Mike, I so desperately want (or maybe that’s Michael Horn’s claim about me … I get some of what each says is my motivation a bit confused). Meanwhile, Mike already has attention, so he said that he wouldn’t get anything out of it and therefore didn’t want to do it. Jimmy countered that it would make great radio (which I agree with).

I did call in, but unfortunately Mike got dropped when Jimmy tried to bring me in. It was the last 10 minutes of the program, anyway, so I told Jimmy what I thought we both (me and Mike) would get out of it: We would each have to back up what we say, and when challenged, it forces us in a radio setting to make our arguments concise, easily understandable, and actually back up what we’re saying.

That’s what we do in science: We have to back up what we say. We expect to get challenged, we expect to have people doubt our work, we expect to have people check our work, and we expect people to challenge our conclusions. Only the best ideas that can stand up to such scrutiny survive. That’s how science progresses. That’s where pseudoscience fails. Science is not a democracy, and it is not a communistic system where every idea is the same and equal as every other idea. It’s a meritocracy. Only the ideas that have merit, that stand up to scrutiny, survive.

The point of science is to develop a model of how the world works. If your model clearly does not describe how the world works and make successful predictions (and have repeatable evidence and have evidence that actually stands up to scrutiny), then it gets dropped.

Final Thoughts

I hope you found these musings at least mildly interesting. And let me know if you agree or disagree. Challenge my ideas, but if you do so, make sure you back them up!

December 12, 2013

Podcast Episode 95: The Fake Story of Planet X, Part 8 – Zecharia Sitchin, Revisited


Is Zecharia’s
Planet X supported by
Recent discov’ries?

I revisit one of the classics in this episode, the Planet X claims of Zecharia Sitchin. This is NOT an episode where I specifically refute Sitchin’s claims. Rather, I go through some of the current events (current a decade ago) that Sitchin wrote about and claimed were evidence that his Nibiru exists. This was actually prompted by a recent e-mail that I had received and was BCC’ed to Michael Heiser (who will be a guest in Episodes 97 and 98, to be released in early January 2014).

As with last episode, I also managed to fit in a short Q&A and Feedback, though the Puzzler is repeated from last episode and the solution will not be discussed until, probably, Episode 101.

I’ll remind everyone that I will be at the Launceston Skeptics in the Pub on January 2, 2014, where I’ll be talking about the Lunar Ziggurat saga, not only from a skeptical point of view, but from an astronomical one as well as from a more social science point of view — dealing with “the crazies.” I’ve also actually put fingers to keyboard and typed out the Intro in what may be my first eBook, currently with the working title, “Tilting at Monuments on Mars.” I also plan to do one on Planet X, , and I may finally work on some of the planned podcast-related videos while I’m on vacation in Australia.

February 13, 2013

The Peer-Review of Bigfoot


Introduction

Today, after a very long-awaited process, forensic DNA analyst Melba Ketchum released the results of her work that allegedly proves Bigfoot exists, being a species roughly 15,000 years old, and having resulted from the interbreeding of a human with an unknown primate at that time.

There are numerous people talking about this in the skeptical underworld … I recommend the Doubtful News story, JREF forum thread, and/or MonsterTalk Facebook page.

Clearly from the title of this blog, I am not a biologist, forensic anthropologist, geneticist, nor any other thing related. And people on those threads I just linked to are covering details of this such that much of anything I say would just be redundant. However, I have talked about the peer-review process on this blog before (mainly here, but also here, here, here, here, and here). And Melba Ketchum’s “publication” of her results is another good example to illustrate the purpose of peer-review and point out the fact that all because someone publishes something in a “science journal,” it does not mean it’s good science.

Edited to Add (2/14/2013): Some zoologists who have read the paper have chimed in, indicating that this paper is not of good quality nor up to general academic standards.

The Requisite Background

To make a long story short that you can read in much more detail at any of those first three links, Dr. Melba Ketchum received several samples of biological material (hairs mostly, I think), several years ago. After alleged detailed DNA analysis, they proved to themselves it was Bigfoot material. They wrote up a paper for a scientific journal – which is what you’re supposed to do in mainstream science – and submitted it for peer review (the process where people who do similar types of work look over the paper and try to figure out if there are problems with it).

As the story goes in this drastically shortened narrative, this was all under wraps until November of 2012 when it was leaked out by some overseas colleague (I want to say Russian? but I don’t entirely remember). This forced Dr. Ketchum to go somewhat public with it and face intense media scrutiny.

I listened to her for a full Coast to Coast AM show back on December 23, 2012, where she was on the defensive and offensive. In listening to her, I actually felt sorry for her and decided to reserve judgement to see what would happen if her results were actually published.

And that’s what happened today.

Publication

The problem is, it’s not in a typical peer-reviewed journal. It’s not even in a science journal that has any track record. She published in the “DeNovo Scientific Journal. Sounds okay at first …

… except that the domain was purchased anonymously 9 days ago for a period of one year. And this is the only paper that the journal has put out. And in fact, they admit that when other journals would not publish their results, they went out, bought a journal, renamed it, and published their paper.

That is not peer-review. This is like a case where your spouse won’t do something you want them to do so you go and build a robot spouse that you program yourself to do that something.

As I said, I felt sorry for her and I was willing to give Melba the benefit of the doubt. This, however, removes all pretense of an attempt at having people look at this work and judge it objectively and go back and fix mistakes that were pointed out.

She also apparently does not understand the concept of “open access” (meaning free) because it costs $30 to view the paper.

Other Signs

There are many other signs of a lack of any validity here. One is that, earlier today, the journal’s website was using stock photos from websites without any of the required attribution. Those photos are gone now, a few hours later, but other stock photos are present still without attribution (though maybe these were paid for, but most licenses still require posting attribution).

Another is that on the Contact Us page, the name “Robin Haynes” appeared earlier today, but it’s missing now (but visible at the moment in Google’s cached version). There is fairly good evidence that this is the renamed Robin Lynn Pheifer, who has gone by a few different names, and is a woman in Michigan who claimed to have 10 bigfoots on her 10-acre property to whom she would repeatedly feed blueberry bagels.

Another is that people have started to contact the co-authors to see if they actually participated in the paper. Of the two who have responded, one said that he did no analysis nor writing of the paper (though was aware of it), while another hasn’t seen any recent version and could not extract any DNA from the samples he had tested.

Final Thoughts

I’m sure this is going to continue to get very detailed scrutiny over the next several days. The problem is that at this point, almost regardless of what is determined, this move to create one’s own journal and call it peer-reviewed (and scientific — after all, “Scientific” is in the title!) is a gross violation of the terms and process. It’s worse than Answers in Genesis having their own “Creation” journal because at least they are clear about what it really is. And it uses stock images with proper attribution.

Peer-review is not a perfect process. But it’s the best we have. Invoking the Galileo complex (which she did) and then making your own publication only serves to further polarize people: Detractors will use this as fodder to point out that you’ve got nothin’, and people who already supported you already think there’s a vast conspiracy to keep them down.

Next Page »

The Rubric Theme. Create a free website or blog at WordPress.com.

Follow

Get every new post delivered to your Inbox.

Join 1,443 other followers